期刊文献+

Cu_2O/TNTs电极的制备及其光电催化还原CO_2合成甲醇研究 被引量:1

Preparation of Cu_2O/TNTs electrode and its photoelectrocatalytic performance for the reduction of CO_2 to methanol
下载PDF
导出
摘要 以钛阳极氧化制备的TiO_2纳米管(TNTs)阵列为载体,采用脉冲电沉积法将Cu_2O沉积到TNTs的管壁上,制备了Cu_2O/TNTs电极。采用扫描电镜(SEM)、透射电镜(TEM)以及X射线光电子能谱(XPS)对电极的形貌以及沉积物价态进行了表征。通过循环伏安、光电流-时间曲线测试,研究了沉积电位以及沉积电量对电极光电催化性能的影响。结果表明:脉冲电沉积的沉积物为Cu_2O纳米颗粒。制备的Cu_2O/TNTs电极光电活性及稳定性明显优于Cu_2O/Ti电极。电位-0.5 V(相对于饱和甘汞电极)下脉冲沉积60mC制备的电极对CO_2还原具有较高的光电催化活性。在装有100 m L 0.1 mol/L NaHCO_3溶液的自制密闭反应器中利用Cu_2O/TNTs电极光电催化还原CO_2,合成的产物主要为甲醇,还原5 h后甲醇含量达到6.05 mg/L。 TiO2 nanotubes (TNTs) arrays obtained by anodization of titanium were used as a matrix to prepare a Cu20/ZNTs electrode via pulse electrodeposition of CUE0 on the walls of TNTs. The morphology of the electrode and the valence of deposit on it were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The effects of deposition potential and charge on photoelectrocatalytic properties of the as-prepared electrode were studied by cyclic voltammetry and photocurrent-time curve measurement. It was shown that the deposits are Cu20 nanoparticles. The photoelectroactivity and stability of CUEO/TNTs electrode are better than that of a CuEO/Ti electrode. The Cu20/TNTs electrode prepared at a deposition potential of-0.5 V (vs. saturated calomel electrode) with a deposition charge of 60 mC presents high photoelectroactivity for COz reduction. The photoelectrosynthesis performed in a homemade airtight reactor with 100 mL of 0.1 mol/L NaHCO3 solution using the CuzO/TNTs electrode proved that the main reduction product is methanol with a yield reaching 6.05 mg/L after reduction reaction for 5 hours.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2016年第9期437-443,共7页 Electroplating & Finishing
关键词 二氧化钛 阳极氧化 纳米管阵列 氧化亚铜 脉冲电沉积 二氧化碳 还原 光电催化 titania anodization nanotube array copper(I) oxide pulse electrodeposition carbon dioxide reduction photoelectrocatalysis
  • 相关文献

参考文献20

  • 1OLAH G A, PRAKASH G K S, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future [J]. Journal of the American Chemical Society, 2011, 133 (33): 12881-12898.
  • 2WANG J J, JING Y H, OUYANG T, et al. Photocatalytic reduction of CO2 to energy products using Cu-TiO2/ZSM-5 and Co-TiO2/ZSM-5 under low energy irradiation [J]. Catalysis Communications, 2015, 59: 69-72.
  • 3YUAN L, XU Y J. Photocatalytic conversion of CO2 into value-added and renewable fuels [J]. Applied Surface Science, 2015, 342: 154-167.
  • 4TSUI L K, WU L L, SWAMI N, et al. Photoelectrochemical performance of electrodeposited Cu20 on TiO2 nanotubes [J]. ECS Electrochemistry Letters, 2012, 1 (2): D15-D19.
  • 5ENGEL C J, POLSON T A, SPADO J R, et al. Photoelectrochemistry of porous p-Cu20 films [J]. Journal of the Electrochemical Society, 2007, 155 (3): F37-F42.
  • 6ZHAO L, DONG W, ZHENG F G, et al. Interrupted growth and photoelectroehemistry of Cu20 and Cu particles on TiO2 [J]. Eleetroehimica Aeta, 2012, 80: 354-361.
  • 7GHADIMKHANI G, DE TACCONI N R, CHANMANEE W, et al. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu20 semiconductor nanorod arrays [J]. Chemical Communications, 2013, 49 (13): 1297-1299.
  • 8HUANG Q, KANG F, LIU H, et al. Highly aligned Cu20/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis [J]. Journal of Materials Chemistry A, 2013, 1 (7): 2418-2425.
  • 9ZHANG JianLing ZHANG XingWang LEI LeCheng.Modification of TiO_2 nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties[J].Chinese Science Bulletin,2008,53(12):1929-1932. 被引量:3
  • 10YANG X Y, XIAO T C, EDWARDS P P. The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting [J]. International Journal of Hydrogen Energy, 2011.36 (11): 6546-6552.

二级参考文献34

  • 1樊彩梅,郭向丹,梁镇海,孙彦平.TiO_2薄膜电极的制备及光电催化性能[J].稀有金属材料与工程,2005,34(3):409-412. 被引量:18
  • 2I1JIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (6348): 56-58.
  • 3ZWILLING V, AUCOUTURIER M, DARQUE-CERETTI E. Anodic oxidation of titanium and TA6V alloy in chromic media: An electrochemical approach [J]. Electrochimiea Acta, 1999, 45 (6): 921-929.
  • 4ZWILLING V, DARQUE-CERETTI E, BOUTRY-FORVEILLE A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy [J]. Surface and Interface Analysis, 1999, 27 (7): 629-637.
  • 5SANDER M S, COTI M J, GU W, et al. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates [J]. Advanced Materials, 2004, 16 (22): 2052-2057.
  • 6KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of titanium oxide nanotube [J]. Langmuir, 1998, 14 (12): 3160-3163.
  • 7VARGHESE O K, MOR G K, GRIMES C A, et al. A titania nanotube- array room-temperature sensor for selective detection of hydrogen at low concentrations [J]. Journal of Nanoscience and Nanotechnology, 2004, 4 (7): 733-737.
  • 8MOR G K, SHANKAR K, PAULOSE M, et al. Enhanced photocleavage of water using titania nanotube arrays [J]. Nano Letters, 2005, 5 (1): 191-195.
  • 9XIE Y B, HUANG C J, ZHOU L M, et al. Supercapacitor application of nickel oxide-titania nanocomposites [J]. Composites Science and Technology, 2009, 69 (13): 2108-2114.
  • 10GHICOV A, TSUCHIYA H, HAHN R, et al. TiO2 nanotubes: H+ insertion and strong electrochromic effects [J]. Electrochemistry Communications, 2006, 8 (4): 528-532.

共引文献9

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部