期刊文献+

半群S(n,r)的极大幂等元生成子半群

Maximal idempotent-generated subsemigroups of the semigroup S(n,r)
下载PDF
导出
摘要 设S_n^-是X_n={1,2,…,n}上的降序变换半群.对任意1≤r≤n-1,研究半群S(n,r)={α∈S_n^-:|im(a)|≤r},得到了半群S(n,r)的极大子半群和极大幂等元生成子半群的完全分类. Let Sn- be the semigroup of alldecreasing full transformations on Xn= { 1,2,…,n}. In this paper,we completely obtain the classification of the maximal subsemigroups as well as the maximal idempotent- generated subsemigroups of the semigroup S(n,r)={α ∈ Sn-: |im(a)|≤ r},for1≤r≤n-1.
出处 《贵州师范学院学报》 2016年第3期3-4,共2页 Journal of Guizhou Education University
基金 2015年贵州省教育大数据技术与教育数学院士工作站项目 2014年度贵州省省级本科教学工程建设项目(黔教高发〔2014〕378号)
关键词 降序变换半群 极大子半群 极大幂等元生成子半群 decreasing transformation semigroup maximal subsemigroup maximal idempotent-generated subsemigroup
  • 相关文献

参考文献10

  • 1You T, Yang X. A classification of the maximal idempo- tent - generated subsemigroups of finite singular semig- roups [ J ]. Semigroup Forum,2002,64 (2) : 236 - 242.
  • 2Yang X, Yang H. Maximal regular subsemibands of Sing, [J]. Semigroup Forum,2006,72( 1 ) :75 -93.
  • 3HaoBoYANG XiuLiangYANG.Maximal Subsemigroups of Finite Transformation Semigroups K(n,r)[J].Acta Mathematica Sinica,English Series,2004,20(3):475-482. 被引量:19
  • 4Ping Zhao. A classification of maximal idempotent - gen- erated subsemigroups of singular orientation - preserving transformation semigroups [ J ]. Semigroup Forum, 2009, 79(2) :377 -384.
  • 5I. Dimimtrova, J. Koppitz. On the maximal regular sub- semigroups of ideals of order - preserving or order - re- versing transformations [ J ]. Semigroup Forum, 2011,82 (1) :172 -180.
  • 6I. Dimitrova and J. Koppitz. On the monoid of all partial order - preserving extensive transformations [ J ]. Comm. Algebra,2012,40(5 ) : 1821 - 1826.
  • 7Ping Zhao, Huabi Hu and Taijie You. A note on maximal regular subsemigroups of transformation semigroups [ J ]. Semigroup Forum ,2014,88(2) :324 - 334.
  • 8田应信,游泰杰.半群S_n^-的极大子半群[J].贵州师范学院学报,2015,31(12):8-9. 被引量:2
  • 9HOWIE J M. Fundamentals of semigroup theory[ M]. Ox- ford :The Clarendon Press, 1995 : 1 - 349.
  • 10Umar A. On the ranks of certain finite semigroups of or- der - decreasing transformations [ J ]. Portugaliae Mathe- matica, 1996,53 ( 1 ) :23 - 34.

二级参考文献21

  • 1徐波.关于有限保序部分一一变换半群的极大逆子半群[J].贵州师范大学学报(自然科学版),2007,25(1):72-73. 被引量:10
  • 2Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 3Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 4Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 5Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 6Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 7Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 8Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 9Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 10Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部