期刊文献+

小噪声扰动的二维扩散的极大似然估计

Maximum likelihood estimation of two dimension diffusion with small noise
下载PDF
导出
摘要 在小噪声扰动条件下研究二维扩散的极大似然估计问题,构建极大似然函数,得到了极大似然估计,并证明了参数估计的无偏性、强相合性和渐近正态性。此外,研究了小参数δ趋于0时,原始方程的参数估计概率收敛到极限方程的参数估计,数值模拟证明了理论结果。 The paper deals with the maximum likelihood estimation of two dimension diffusion with small noise perturbations and establishes maximum likelihood function. It does not work out the maximum likelihood estimation,but also proves the unbiased property,strong consistency,and asymptotic normality of the parameter estimation. The innovation point of this paper is the finding that the parameter estimator of the former equation convergence in probability the estimator of the limit equation when parameter is close to zero. Simulation results demonstrate our theoretical finding.
作者 张如梦
出处 《贵州师范学院学报》 2016年第3期5-8,共4页 Journal of Guizhou Education University
基金 国家自然科学基金面上项目11171153
关键词 极大似然估计 渐近正态性 强相合性 概率收敛 随机微分方程 maximum likelihood estimator asymptotic normality strong consistency probability convergence stochastic differential equation
  • 相关文献

参考文献12

  • 1李群.一类随机微分方程的参数估计[J].应用数学,2012,25(4):771-776. 被引量:3
  • 2张彩.带有小干扰项随机微分方程的参数估计[J].高校应用数学学报(A辑),2002,17(1):91-97. 被引量:3
  • 3Konstantinos Spilipoulos, Alexadr Chronpoulou. Maximum likelihood estimation for small noise multiscale diffusion [ D ]. Department of Mathematics Statistics, Boston Uni- versity, 2015 : 3 - 5.
  • 4刘金山,吴付科.随机微分方程导论与应用[M].北京:科学出版社,2007:135-147.
  • 5LIPSTER. R. S. , SHIRYAEY. A. N. Statistic of Random Processes [ M ]. New York: SPINGER VERLAG, 1997 : 682 - 696.
  • 6Andrew Paranicolaou, Konstantinos Spilipoulos. Filtering the maximum like lihood for muhiscale problems [ J ]. De- partment of mathematics statistics ,2015:5 - 9.
  • 7CHERIDITO. Gaussion moving averages semimartingales and option pricing [ J ]. Stochastic Process App, 2004 : 47 -68.
  • 8张彩伢,戴晓霞.无穷维空间上随机偏微分方程的参数估计[J].浙江大学学报(理学版),2015,42(2):136-141. 被引量:1
  • 9E. Pardoux, A. Y. Veretennikov. On the Poisson equation and diffusion approximationl [ M]. The Annals of proba- bility,2001:1061 - 1085.
  • 10E. Pardoux, A. Y. Veretennikov. On the Poisson equation and diffusion approximation2 [ M 1. The Annals of proba- bility,2003 : 1166 - 1192.

二级参考文献20

  • 1蒋达清,张宝学,王德辉,史宁中.具有随机扰动的Logistic方程正解的存在唯一性、全局吸引性及其参数的极大似然估计[J].中国科学(A辑),2007,37(6):742-750. 被引量:6
  • 2万昌秀 梁中宇.逻辑斯蒂曲线的一种拟合方法[J].生态学报,1983,3(3):288-296.
  • 3王振中 林孔勋.逻辑斯蒂曲线K值的四点式平均值估计法[J].生态学报,1987,7(3):193-198.
  • 4林正炎,陆传荣,苏中根.概率极限理论[M].北京:高等教育出版社,1999:224-239.
  • 5Friedman A. Stochastic Differential Equations Theory and applications[M]. San Diego: Academic Press.1976.
  • 6Bernt Oksendal. Stochastic Differential Equations[M]. New York: Springer, 2003.
  • 7IT() K. Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces[M]. Baton Rouge: Soci- ety for Industrial and Applied Mathematics, 1984.
  • 8ROZOVSKII B L. Stochastic Evolution Systems[M] . Dordrecht : Springer, 1990.
  • 9GHANEM R. Ingredients for a general purpose sto- chastic finite elements implementation [J]- Comput Methods Appl Mech Engrg, 1999,168 : 19-33.
  • 10BALAN R M. Linear SPDEs driven by stationary ran- dom distributions[J]. Journal of Fourie Analysis andApplications, 2012,18 .. 1113-1145.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部