期刊文献+

基于IFCM-GRA的空间多维热误差温度测点优化 被引量:5

Optimization of temperature measuring points in multi-dimensional space for thermal error based on IFCM-GRA
下载PDF
导出
摘要 热误差是精密、超精密加工中主要的误差源之一,热误差温度测点优化是热误差补偿的关键问题.在机床空间多维布置的大量温度测点之间存在多重相关性,从众多测点中选取特征点的优劣程度,将直接影响到热误差补偿效果.通过对温度测点间多重相关性及温度与热误差关系的综合分析,采用改进的模糊C-均值(IFCM)聚类算法对温度测点进行聚类,以减小类与类之间温度测点的相关性,且避免FCM算法对初始聚类中心敏感易局部收敛的缺点.对温度测点按灰色关联分析(GRA)中的灰色综合关联度进行排序,从变化量和变化率的角度综合反映温度与热误差的关系.采用IFCM-GRA对温度测点进行优化,提高了热误差模型的鲁棒性及准确性,使温度测点数量大幅度减少.在某型号精密卧式加工中心上进行实验,温度测点从17个减少到4个.在不同转速下,利用多元线性回归对优化出的温度测点与热误差建立模型,所建立模型均能很好地预测热误差变化情况,经对预测模型分析,轴向热误差由几十微米减小到5μm以内. Thermal error is one of the main error sources for the precision and ultra-precision machining. Optimizing the temperature measuring points for the thermal error is the key problem for the thermal error compensation. The numerous temperature measuring points arranged in the multi- dimensional space of machine tool exist multiple correlations. The quality of choice of the feature points from the numerous measuring points directly affects the thermal error compensation effect. By comprehensively analyzing the multiple correlations among the temperature measuring points and the relation between the temperature and the thermal error, an improved fuzzy C-means (IFCM) clustering algorithm is adopted to classify the temperature measuring points. It can reduce the correlations of the temperature measuring points for different classes and avoid the shortcoming of the FCM algorithm which is too sensitive for the initial clustering center to get global convergence. The temperature measuring points are sorted by the grey synthetic degree of association in the grey relational analysis (GRA), which can comprehensively reflect the relation between the temperature and the thermal error at the perspective of the value of change and the rate of change. Using IFCM- GRA to optimize the temperature measuring points can improve the robustness and accuracy of the thermal error model and decrease the number of the temperature measuring points greatly. This method was tested on a horizontal precision machining center. The temperature measuring points were reduced to 4 from 17. At different revolving speeds, by using the multiple linear regression, the model for the optimal temperature measuring points and the thermal error is established. It can predict the thermal error change well. The axial thermal error could be reduced from dozens of microns to 5 microns by analyzing the forecasting model.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第3期236-243,共8页 Journal of Dalian University of Technology
基金 辽宁省科技创新重大专项(201301002)
关键词 数控机床 测点优化 FCM聚类 灰色关联分析 灰色综合关联度 CNC machine tool measuring points optimization fuzzy C-means clustering greyrelational analysis grey synthetic degree of association
  • 相关文献

参考文献13

  • 1Ramesh R, Mannan M A, Poo A N. Krrorcompensation in machine tools — a review. Fart II:thermal errors [J]. International Journal of MachineTools and Manufacture, 2000,40(9) : 1257-1284.
  • 2Uhlmann E, Hu J. Thermal modelling of a highspeed motor spindle [J]. Procedia C1RP, 2012, 1:313-318.
  • 3Yang J,Shi H,Feng B. el al. Applying neuralnetwork based on fuzzy cluster pro-processing tothermal error modeling for coordinate boringmachine [J]. Procedia CIRP, 2014, 17:698-703.
  • 4Hsieh K H,Chen T R, Chang P,et at. Thermalgrowth measurement and compensation forintegrated spindles [J]. The International Journal ofAdvanced Manufacturing Technology, 2013, 64(5-8):889-90l.
  • 5Li Y X,Yang J (_;,Gelvis T,et al. Optimization ofmeasuring points for machinc tool thermal errorbased on grey system theory [J], The InternationalJournal of Advanced Manufacturing Technology,2006,35(7-8):745 750.
  • 6LIANG Rui-jun,YE Wen-hua, Zhang H H, el al.The thermal error optimization models for C'NCmachine tools [J]. The International Journal ofAdvanced Manufacturing Technology, 2012 , 63(9-12):1167-1176.
  • 7M1AO En-ming,GONG Ya-yun, DANG Lian-chun, et al. Tcmperature-scnsiuve point selectionof thermal error model of CNC machining center[J ]. The International Journal of AdvancedManufacturing Technology, 2014 , 74(5-8) : 681-691.
  • 8MA You-ji. Sensor placement optimization forthermal error compensation on machinc tools [d].Ann Arbor : University of Michigan, 2001.
  • 9Lee Jin-hyeon, Yang Seung-han. Stritisfica)optimization and assessment of a thermal errormodel for CNC machine tools [ J ]. InternationalJournal of Machine Tools and Manufacture, 2002,42(1):147-155.
  • 10曲福恒,崔广才,李岩芳,等.模糊聚类算法及应用[M].北京:国防工业出版社,2011.

二级参考文献13

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 3尹中航,唐元钢,孙富春,孙增圻.Fuzzy Clustering with Novel Separable Criterion[J].Tsinghua Science and Technology,2006,11(1):50-53. 被引量:4
  • 4Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Plenum Press, NewYork, 1981
  • 5Duda R, Hart P, Stork D. Pattern Classification ( 2 nd Edition ) [M]. New York,USA:John Wiley& Sons,2001
  • 6Rose K, Gurewitz E, FoxGC. Constrained clustering as optimization method[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15(8) : 785-794
  • 7Krishnapuram R,Keller J M. A possibilistic approach to cluste ring[J]. IEEE Trans. Fuzzy Systems, 1993,1 (2) : 98-110
  • 8Timm H, Kruse R. A modification to improve possibilistic fuzzy cluster analysis[C]//Proc, of the 2002 IEEE Int'l Conf. on Fuzzy Systems, (2). Honululu: IEEE, 2002 : 1460-1465
  • 9Timm H, Borgelt C, Dorring C, et al. Fuzzy cluster analysis with cluster repulsion[C]//Proc. of the Eruopean Syrup. On Intelligent Technologies, Tenerife. 2001. CD-ROM
  • 10Ozdemir D, Akarun L. Fuzzy algorithms for combined quantization and dithering[J]. IEEE Trans. Image Processing, 2001,10 (6):923-931

共引文献85

同被引文献32

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部