期刊文献+

SVD算法在建筑物点云数据配准中的应用

Application of SVD algorithm in registration of building point clouds
下载PDF
导出
摘要 点云数据配准是点云数据处理的一个关键性环节。配准的目的就是为了得到不同视角下点集之间的平移向量与旋转矩阵。SVD算法(Singular Value Decomposition,奇异值分解法)是一种可靠的求解平移向量与旋转矩阵的方法。本文通过对建筑物扫描点云数据进行配准,从点云重叠度、噪声、初始配准状态三个方面讨论SVD算法的精度和时间消耗问题,实验结果可以作为点云数据预处理很好的参照。 The data registration is a critical link in data processing of point clouds. The purpose of registration is to obtain a vector of translation and rotation matrix under different perspectives. The SVD algorithm is a reliable algorithm of solving the translation vector and rotation matrix. In this paper,through registration of building point clouds,the accuracy and time consumption of this method are discussed based on overlap,noise and initial registration status of point clouds. The experimental results can be used as a good reference for preprocessing of point clouds.
出处 《工程勘察》 2016年第6期55-57,共3页 Geotechnical Investigation & Surveying
基金 住房和城乡建设软科学研究项目:历史文化建筑综合测绘和安全监测技术研究与应用(K8201396)
关键词 SVD算法 建筑物 点云配准 SVD algorithm building registration of point clouds
  • 相关文献

参考文献5

  • 1郑德华.ICP算法及其在建筑物扫描点云数据配准中的应用[J].测绘科学,2007,32(2):31-32. 被引量:60
  • 2Besl P J, Mckay N D. A method for registration of 3D shapes[J ]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1992, 14 (2) : 239 -256.
  • 3Simon D A. Fast and Accurate Shape-Based Registration [ D ].Pittsburgh, Pennsylvania; Carnegie Mellon University, 1996.
  • 4Williams J A, Bennamoun M,Latham S. Multiple view 3Dregistration : a review and a new technique [ A]. Pcoceedings ofthe IEEE International Conferences on Systems, Man andCybernetics [ C ]. Tokyo,Japan : IEEE Press, 1999, 3: 497-502.
  • 5戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:196

二级参考文献15

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3何文峰,查红彬.基于平面特征的深度图像配准[A].见:中国人工智能进展2003,上卷[C]:643-648,北京邮电大学出版社,2003.
  • 4Besl P Makay.A Method for Registration of 3D Shape[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14:239-256.
  • 5Chen Y,Medioni G.Object Modeling by Registration of Multiple Range Images[J].Image and Vision Computing,1992,10:145-155.
  • 6Bergevin R,Soucy M,Gagnon H,Laurendeau D.Toward A General Multi-View Registration Technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18.
  • 7Soon-Yong Park,Murali Subbarao.An Accurate and fast Point-to-Plane Registration Technique[J].Pattern Recognition Letters,2003,24:2967-2976.
  • 8Andrew Edie Johnson,Sing Bing Kang.Registration and Integration of Textured 3D Data[J].Image and Vision Computing,1999,17:135-147.
  • 9Natasha Gelfand,Leslie Ikemoto,Szymon Rusinkiewicz,Marc Levoy.Geometrically Stable Sampling for the IC PAlgorithm[EB/OL].www.Yahoo.com.May,2004.
  • 10Besl P J,Mckay N D.A method for registration of 3-d shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239 -256.

共引文献245

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部