摘要
从相对论性粒子的拉格朗日函数出发,推导出相对性粒子在平方反比引力场中运动的轨道微分方程。该方程在低速运动情况下可过渡到经典力学的轨道方程,具有普遍意义,对于解决有心力和轨道关系的力学问题有一定的参考价值。
Starting from the Lagrange function of relativistic particles, the paper deduces the orbital differential equation while the relativistic particles move in the inverse and square gravitational field. The equation can be transformed into the orbit equation of classical mechanics under the condition of low speed movement, which has significant reference valuefor solving the mechanics problem related tothere lationship between central force and orbit.
出处
《高教学刊》
2016年第12期250-250,252,共2页
Journal of Higher Education
基金
安徽省自然科学基金(编号:1608085QA06)资助
关键词
相对论
有心力
轨道方程
theory of relativity
central force
orbital equation