期刊文献+

基于动态窗口的灰色加权填充算法及应用 被引量:1

Grey Weighted Imputation Method Based on Dynamic Window and Its Application
下载PDF
导出
摘要 为解决复杂系统中单属性缺失数据填充困难问题,提出了基于动态窗口的灰色加权填充算法。该算法通过建立双向灰色预测模型,并采用模型精度评价系数加权填充缺失数据,有效增强了算法的准确性;提出基于灰色模型评价系数反馈的动态伸缩窗口概念,寻找产生最优模型的训练数据序列,使算法具有良好的鲁棒性和适应性。实验结果表明,该方法在RMSE和MA两项指标上均优于传统的双向灰插值、灰插值、多项式插值等方法。 In order to solve the difficulty of single attribute missing values imputation in complex systems, a grey weightedimputation algorithm based on dynamic window is proposed. The algorithm imput missing values with two-way grey predictionmodel and model accuracy evaluation coefficient weighting method, which enhanced the algorithm precision effectively. It introducesa dynamic flexible window concept based on grey model evaluation coefficient feedback for finding the optimal model, which makes the algorithm be robust and adaptable. Numerical experiments results show that comparing several existingmethod, the algorithm can achieve better performance on root-mean-square error and mean accuracy.
出处 《指挥控制与仿真》 2016年第2期43-47,共5页 Command Control & Simulation
基金 江苏省自然科学基金(BK20150720)
关键词 动态窗口 灰色预测 加权系数 缺失值填充 军事训练数据 dynamic window grey predict weighted coefficient missing value imputation military training data
  • 相关文献

参考文献10

  • 1武森,冯小东,单志广.基于不完备数据聚类的缺失数据填补方法[J].计算机学报,2012,35(8):1726-1738. 被引量:62
  • 2Garda-Laencina P J ,Sancho-Gomez J L ,Figueiras-VidalA R , et al. K nearest neighbours with mutual infor^nationfor simultaneous classification and missing data imputation[J] . Neurocomputing,2 0 0 9,7 2 (s 7 -9 ) :1483-1493.
  • 3张宏军,郝文宁.基于作战行动的训练演习实况数据编辑方法[J].军事运筹与系统工程,2013,27(3):10-14. 被引量:2
  • 4W u,X : Knowledge Acquisition From Database[M] .AblexPublishing, 1995.
  • 5Han J , Kamber M, Pei J. Data mining: concepts andtechniques ( third edition) [M] . Morgan Kaufmann Publishers,2012.
  • 6Garcia S , Luengo J , Herrera F. Data Preprocessing inData Mining [M] . Springer InternationalPublishing, 2015.
  • 7Cooper L G ,Leeuw- J D , Sogomonian A G. An imputationmethod for dealing with missing data in regression [J] .Applied Stochastic Models & Data Analysis, 1991, 7( 3 ) :213-235.
  • 8张红霞.缺失值填充:基于信息增益的方法[J].计算机工程与设计,2006,27(24):4810-4812. 被引量:8
  • 9金义富,朱庆生,邢永康.序列缺失数据的灰插值推理方法[J].控制与决策,2006,21(2):236-240. 被引量:11
  • 10Zhang S , Jin Z , Zhu X. Missing data imputation by utilizinginformation within incomplete instances [J] . Journalof Systems & Software,2 0 1 1 ,8 4 ( 3 ) :452-459.

二级参考文献27

  • 1毕方明,张永平.数据挖掘技术研究[J].计算机工程与设计,2004,25(12):2242-2244. 被引量:28
  • 2邹志文,朱金伟.数据挖掘算法研究与综述[J].计算机工程与设计,2005,26(9):2304-2307. 被引量:52
  • 3胡应平.陆军分队城市作战行动的概念建模[J].海军工程大学学报,2006,18(5):28-32. 被引量:3
  • 4Mehmed K.Data Mining Concepts,Models,Methods and Algorithms[M].New York:IEEE Press,2002.
  • 5Trevor H,Robert T,Jerome F.The Elements of Statistical Learning:Data Mining,Inference and Prediction[M].New York:Springer-Verlag Press,2001.
  • 6Yeh M F,Chen Y J,Chang K C.ECG Signal Pattern Recognition Using Grey Relational Analysis[A].Proc of the 2004 IEEE Int Conf on Networking,Sensing and Control[C].New York:IEEE Press,2004:725-730.
  • 7Lin Z C,Lin W S.The Application of Grey Theory to the Prediction of Measurement Points for Circularity Geometric Tolerance[J].J of Advanced Manufacturing Technology,2001,17(5):348-360.
  • 8Norihito S,Osamu U,Chikara K.Introduction of Time Series Data Analysis Using Grey System Theory[A].Proc of the 2th Int Conf on Knowledge-based Intelligent Electronic Systems[C].New York:IEEE Press,1998:67-72.
  • 9Wen K L,Chang T C,Chang W C,et al.The Study of Missing Point in GM(1,l) Model[A].Proc of IEEE Int Conf on Systems,Man and Cybernetics[C].New York:IEEE Press,2000:3384-3387.
  • 10Quinlan J R.C4.5:Programs for machine learning[M].San Mate,CA:Morgan Kaufmann Publishers Inc,1993.

共引文献78

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部