摘要
基于柱面扩散理论,假定盾尾注浆浆液为宾汉姆流体,在将其扩散过程看作浆液在大量毛细管中渗流运动的前提下,引入迂曲度的定义,建立浆液渗透扩散力学模型,在已有研究的基础上通过进一步推导分析得到该模型下浆液的扩散半径及其对管片产生注浆压力的计算式。最后结合具体实例,就对应考虑毛细管迂曲度和不考虑毛细管迂曲度条件下模型的计算结果进行分析。结果表明,浆液扩散半径、注浆对单位面积管片所产生的压力受迂曲度的影响较为显著,考虑迂曲度条件下毛细管注浆压力和浆液扩散半径均小于不考虑迂曲度条件下的情形,因而在建立盾尾注浆毛细管渗透扩散模型时必须考虑迂曲度的影响。
Based on the cylinder diffusion theory and the assumption that grouts is as Bingham fluid,and a mechanical model for penetration diffusion in surrounding soils is set up by simplifying grouting penetration as transfusion in soil capillary tubes with uneven bore diameters.The definition of wingding degree is brought in to establish mechanical model for penetration diffusion.On the basis of the existing research and through analysis of the model and its impact on the grouting diffusion radius and segments,grouting pressure calculation formula is generated.Finally combining specific examples,corresponding to different conditions wingding degree model,calculation results are analyzed.The results show that grouting diffusion radius,grouting pressure on segments generated per unit area is significantly influenced,the value obtained when considering give capillary under the condition of grouting pressure and grout diffusion radius is less than under the condition of not considering give situation,so when tail shield grouting capillary diffusion model give effects must be considered.
出处
《公路》
北大核心
2016年第5期212-216,共5页
Highway
关键词
盾构隧道
盾尾注浆
毛细管
渗透扩散
迂曲度
shield tunnel
grouting at the tail
capillary tube
penetration diffusion
winding degree