期刊文献+

视觉显著性导向的图像压缩感知测量与重建 被引量:4

Visual saliency oriented compressive sensing measurement and reconstruction of images
原文传递
导出
摘要 提出利用视觉显著性指导图像压缩感知的自适应测量与重建的算法.考虑到感知端不可负载过多的计算量,采用亮度对比度计算输入全采样图像的显著度,并根据块显著度实现自适应测量;重建端利用动态变化的块测量率重新估算块显著度,并以此加权重建模型的目标函数,集中优化高显著块.实验结果表明:与传统算法相比,所提算法重建图像的整体客观质量更优,且可更好地保护边缘与纹理等重要细节,主观视觉质量良好,同时保证了较低的测量与重建计算复杂度. Luminance contrast was used to compute the saliency value of input all-sampling image,and the adaptive measurement wais realized depending on the saliency value of image block.At the reconstruction side,the saliency value of each block was estimated by using varying block measurement rates,and then these saliency values were used to weight the objective function of reconstruction model in order to enforce the quality improvements of high-saliency blocks.Experimental results indicate that the reconstructed image by the proposed algorithm has a better objective quality when comparing with several traditional ones,and its edge and texture details are better preserved,which guarantees the better subjective visual quality.Besides,the proposed method has a low computational complexity of measurement and reconstruction.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期13-18,53,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61501393 61572417) 信阳师范学院青年科研基金资助项目(2015-QN-043)
关键词 图像压缩感知 视觉显著性 亮度对比 自适应测量 显著加权重建 image compressive sensing visual saliency luminance contrast adaptive measurement saliency-weighted reconstruction
  • 相关文献

参考文献21

  • 1Candes E J, Romberg T, Tao T. Robust uncertainty principles: exact signal reconstruction from highly in- complete frequency information [J]. IEEE Transac- tions on Information Theory, 2006, 52(2): 489-509.
  • 2Donoho D L. Compressed sensing[J]. IEEE Transac- tions on Information Theory, 2006, 52 (4) : 1289- 1306.
  • 3Deng C, Lin W, Lee B S, et al. Robust image coding based upon compressive sensing[J]. IEEE Transac- tions on Multimedia, 2012, 14(2) : 278-290.
  • 4Chen C, Tramel E W, Fowler J E. Compressed sens- mg recovery of images and video using multihypothe- sis predictions[C] // 2011 Conference Record of the 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR). Pracific Grove: IEEE, 2011:1193- 1198.
  • 5Becker S, Bobin J, Cands E J. NESTA : a fast and ac- curate first-order method for sparse recovery[J]. SIAM Journal on Imaging Sciences, 2011, 4(1) : 1-39.
  • 6Zhang Jian, Zhao Debin, Xiong Ruiqin, et al. Group- based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23 (8) : 3336-3351.
  • 7Yang Jianbo, I.iao Xuejun, Yuan Xin, et al. Com- pressive sensing by learning a Gaussian mixture model from measurements[J]. IEEE Transactions on Image Processing, 2015, 24(1): 106-119.
  • 8Wang Liangjun, Wu Xiaolin, Shi Guangming. Binned progressive quantization for compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21 (6) : 2980-2990.
  • 9Mun Sungkwang, Fowler J E. DPCM for quantized block-based compressed sensing of images[C]//Pro- ceedings of the European Conference on Signal Pro- cessing. Bucharest: IEEE, 2012: 1424-1428.
  • 10Zhang Jian, Zhao Debin, Jiang Feng. Spatially di rectional predictive coding for block based compres- sive sensing of natural images[C] // Proceedings of the 20th IEEE International Conference on Image Processing. Melbourne.. IEEE, 201:: 1021-1025.

二级参考文献15

  • 1Donoho D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
  • 2Si Xiaoyun,Jiao Licheng,Yu Hang,et al.SAR images reconstruction based on compressive sensing[C]∥Proceedings of the 2nd Asian-Pacific Conference on Synthetic Aperture Radar.Xi′an:IEEE,2009:1056-1059.
  • 3Wang Nana,Li Jingwen.Block adaptive compressed sensing of SAR images based on statistical character[C]∥IEEE International Geoscience and Remote Sensing Symposium.Vancouver:IEEE,2011:640-643.
  • 4Wu Jiao,Liu Fang,Jiao Licheng,et al.Compressive sensing SAR image reconstruction based on Bayesian framework and evolutionary computation[J].IEEE Transactions on Image Processing,2011,20(7):1904-1911.
  • 5Li Xiaobo,Chen Jie,Zhu Yanqing,et al.Blocked spectrum compressive sensing based on root-music algorithm for SAR image[C]∥IEEE International Geoscience and Remote Sensing Symposium.Munich:IEEE,2012:2094-2096.
  • 6Gan L.Block compressed sensing of natural images[C]∥Proceedings of the 15th International Conference on Digital Signal Processing.Cardiff:IEEE,2007:403-406.
  • 7Sungkwang M,Fowler J E.Block compressed sensing of images using directional transforms[C]∥Proceedings of the 16th IEEE International Conference on Image Processing.Cairo:Egypt,2009:3021-3024.
  • 8Yu Ying,Wang Bin,Zhang Liming.Saliency-based compressive sampling for image signals[J].IEEE Signal Processing Letters,2010,17(11):973-976.
  • 9Figueiredo M A T,Wright S,Nowak R D,et al.Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal on Selected Areas in Communications,2007,1(4):586-597.
  • 10He L,Carin L.Exploiting structure in waveletbased Bayesian compressive sensing[J].IEEE Transaction on Signal Processing,2009,57(9):3488-3497.

共引文献12

同被引文献34

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部