期刊文献+

扩展原模图LDPC短码的优化构造 被引量:4

Optimal construction of extended short protograph LDPC codes
原文传递
导出
摘要 为设计高纠错性能且低复杂度的准循环-低密度奇偶校验(QC-LDPC)短码,提出了扩展原模图的码优化构造方法.在优化的原模图基础上,通过优化删除节点及扩展该模板校验节点为复合线性分组码扩展节点,并提升子矩阵维度来构造高效短码长QC-LDPC码.采用针对准循环基矩阵渐进边增长(PEG)扩展和准循环-改进的渐进环外消息度(QC-IACE)算法,优化搜索循环置换子矩阵偏移量,联合优化与改善码字停止集、陷阱集及围长与环分布等关系,综合提高码性能.仿真表明:所构造的QC-LDPC短码具有较好的误比特率性能,接近现有高性能随机码字,但码长较短,复杂度和编译码延迟相对较低. In order to design short quasi-cyclic low-density parity-check(QC-LDPC)codes with good performance and low complexity,an optimization code construction was proposed based on an extension of the protograph.Based on an optimized protograph,an efficient short QC-LDPC code was constructed by properly puncturing and expanding a check nodes in the protograph to a compound block code nodes,followed by enlarging the dimension of the sub-matrices of the code.Thus,ajoint optimization algorithm,combined by the progressive edge growth(PEG)for the optimization of the extended base matrices and the QC improved approximated cycle extrinsic message degree(QC-IACE)for the circulant offset optimizations,was proposed to search the optimal offsets in the circulant permutation sub-matrices of the codeword,which helped to increase code performance by jointly improving and optimizing the stop set and trapping set of the code,as well as girths and cycle profiles.Simulation results indicate that the proposed codes have quite good performance of bit error rate,and compared with current excellent random LDPC code words,the proposed codes obtain almost the same performance.Therefore,the codes can possess low complexity and less latency of encoding and decoding due to their good properties of short code length.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期35-40,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 浙江省自然科学基金资助项目(LZ14F010003) 国家自然科学基金资助项目(61471152) 东南大学移动通信国家重点实验室开放研究基金资助项目(2014D02) 中国博士后科学基金资助项目(2014M561555) 浙江省公益性技术应用研究计划资助项目(2015C31103)
关键词 QC-LDPC码 扩展原模图 改进的渐进环外消息度 渐进边增长 围长 QC-LDPC codes extended protograph improved approximated cycle extrinsic message degree progressive edge growth girth
  • 相关文献

参考文献16

  • 1Tanner R. A recursive approach to low complexity codcs[J]. IEEE Transactions on Information Theo- ry, 1981, 27(5). 533-547.
  • 2shuI.,CostelloT)J.差错控制编码[M].晏坚,何元智,等译.北京:机械工业出版社,2007.
  • 3刘文明,朱光喜,邓勇强.一种改进的确定性准规则LDPC码[J].华中科技大学学报(自然科学版),2006,34(6):18-21. 被引量:2
  • 4敬龙江,林竟力,成先涛,朱维乐.构造短码长不规则LDPC码[J].信号处理,2006,22(4):589-591. 被引量:2
  • 5You Y, Xiao M, Wang L. The rate-compatible multi- edge type LI)PC codes with short block length[C]// IEEE 5th International Conference on Wireless Com- munication, Networking and Mobile Computing 2009. Beijing IEEE, 2009 l-4.
  • 6邓勇强,朱光喜,刘文明.一种基于图论的LDPC码构造算法的研究[J].华中科技大学学报(自然科学版),2006,34(3):58-61. 被引量:2
  • 7Thorpe J. Low-density parity-check (LDPC) codes constructed from protographsr[R]. JPL: JPL INP Technical Report, 2003 : 42-54.
  • 8Divsalar D, Dolinar S, Jones C. Short protograph based LDPC codes[C]//IEEE Military Communica- tion Conference 2007 (Milcom'07). Orlando: IEEE, 2007 : 1-6.
  • 9Nguyen T V, Nosratinia A. Rate-compatible short length protograph LDPC codes[J]. IEEE Communi cation Letters, 2013, 17(5): 948-951.
  • 10Liva G, Ryan W E, Chiani M. Quasi-cyclic general ized LDPC codes with low error floors[J]. IEEE Transactions on Communications, 2008, 56 ( 1 ) : 49- 57.

二级参考文献19

  • 1Gallager R G. Low-density parity-check codes[J].IRE Trans Inform Theory, 1962, 8(1): 21-28.
  • 2Moura J M F, Lu Jin, Zhang Haotian. Structured low density parity-check codes[J]. IEEE Signal Proeessing Magazine, 2004(1): 42-55.
  • 3Hu X Y, Eleftheriou E, Arnold D M. Progressive edge-growth Tanner graphs[C]//IEEE Proc Globecom'2001. New York: IEEE, 2001. 995-1 001.
  • 4Zhang Haotian, Moura J M F. The design of structured regular LDPC codes with large girth[C]//IEEE Proc Globecom 2003. New York: IEEE, 2003:4 022-4 027.
  • 5Gallager R G. Low-Density Parity-Check Codes[-D].Combridge: Dept of Engineering of Electronics and Electrical, Massachusetts Institute of Technology,1963.
  • 6Gallager R G. Low density parity check codes[J].IRE Trans on Information Theory, 1962, 8(3) : 208-220.
  • 7Gallager R G. Low density parity check codes[M].Cambridge: MIT Press, 1963.
  • 8Berrou C, Blavieux A, Thitimajshima P. Near shannon limit error correcting coding and decoding: turbo codes[C]// Berral C, Blavieux A. Proc 1993 IEEE International Conference on Communications. New York: IEEE, 1993. 1 064-1 070.
  • 9Mackay D J C. Good error correcting codes based on very sparse matriees[J]. IEEE Trans on Information Theory, 1999, 45(2): 399-431.
  • 10Li Ping, Leung W K, Nam P. Low density parity check codes with semi-random parity check matrix[J]. Electronics Letters, 1999, 5(1): 38-39.

共引文献2

同被引文献33

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部