期刊文献+

连续体覆冰导线模型的舞动实验研究 被引量:3

Experimental Investigation on the Galloping of Iced Transmission Line as a Continuum
原文传递
导出
摘要 建立了适合连续体覆冰导线舞动实验的专用风洞,以连续体单跨覆冰单导线模型为实验对象,采用激光传感器测量了导线不同位置处的位移响应,得到了导线在不同风速下的舞动振型,利用力传感器得到了导线舞动时的动张力。结果表明:覆冰导线在来流风场作用下进行舞动,在随风速增大的过程中先后经历了两个大幅舞动阶段,一阶模态和二阶模态在两个阶段中分别被激发;动张力幅值与舞动幅值基本成正比,动张力频率包含导线模型舞动频率的一倍频和二倍频。在大风速时,导线模型的舞动为多阶模态的耦合振动,在舞动过程中无固定的波峰和结点。 A transmission a continuum different pos correspondin transmission special wind tunnel which is suitable for experimental study of continuous iced line galloping was established. Taking the single span of single iced transmission line (as model) mode as experimental object, the displacement responses of transmission line at g ons were measured by laser transducers; the galloping modes of transmission line to different wind speeds were obtained; the dynamic tension force of galloping ne was obtained by force transducers. Results show that iced transmission line is swaying due to the action of incoming wind flow, during the process of wind speed increasing, it has experienced two large swaying amplitude stages; the first and the second order modes are excited in the two stages respectively; the amplitude of dynamic tension force is proportional to the amplitude of swaying amplitude; the dynamic tension force frequency includes transmission line model swaying frequency and its double frequency. When wind velocity is very high, the galloping is composed by the coupled vibration of multiple order modes, and there are no fixed peaks and nodes in galloping.
出处 《实验力学》 CSCD 北大核心 2016年第2期186-192,共7页 Journal of Experimental Mechanics
基金 国家自然科学基金(No.51009107 No.51479136)资助 天津市自然科学基金重点项目(No.13JCZDJC27100 No.09JCZDJC26800)
关键词 覆冰输电线路 连续体模型 舞动 振型 iced transmission line continuous model galloping mode
  • 相关文献

参考文献12

  • 1王少华,蒋兴良,孙才新.输电线路导线舞动的国内外研究现状[J].高电压技术,2005,31(10):11-14. 被引量:152
  • 2Denhartog J P. Transmission line vibration due to sleet [J].Transactions of the American Institute of Electrical Engineers, 1932, 51(4) :1076-1084.
  • 3Nigol O, Buchan P G. Conductor galloping part I: Den hartog mechanism [J]. Power Apparatus and Systems, IEEE Transactions on, 1981, 100(2):699-707.
  • 4Nigol O, Buchan P G. Conductor galloping part II: Torsional mechanism [J]. Power Apparatus and Systems, IEEE Transactions on, 1981, 100(2): 708-720.
  • 5Yu P, Popplewell N, Shah H. Instability trends of inertially coupled galloping, part 1: Initiation [J]. Journal of Sound and Vibration, 1995, 183(4):663-678.
  • 6Alonso G, Meseguer J, P6rez-Grande I. Galloping instabilities of two-dimensional triangular cross-section bodies [J]. Experiments in Fluids, 2005, 38(6):789-795.
  • 7Alonso G, Valero E, Meseguer J. An analysis on the dependence on cross section geometry of galloping stability of two-dimensional bodies having either biconvex or rhomboidal cross sections [J]. European Journal of Mechanics-B/Fluids, 2009, 28 (2) : 328 - 334.
  • 8Lilien J L, Havard D G. Galloping database on single and bundle conductors prediction of maximum amplitudes [J].Power Delivery, IEEE Transactions on, 2000, 15(2):670-674.
  • 9楼文娟,孙珍茂,许福友,李宏男,王昕.输电导线扰流防舞器气动力特性风洞试验研究[J].浙江大学学报(工学版),2011,45(1):93-98. 被引量:13
  • 10王昕,楼文娟,沈国辉,许福友.覆冰导线气动力特性风洞试验研究[J].空气动力学学报,2011,29(5):573-579. 被引量:29

二级参考文献54

共引文献223

同被引文献30

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部