期刊文献+

高温下C/SiC复合材料弯曲断裂性能实时测试和微观结构表征分析 被引量:5

In-situ Measurements of Bending Fracture Behavior and Microstructure Analysis of C/SiC Composites under High Temperatures
原文传递
导出
摘要 采用先驱体浸渍裂解法制备三维编织的C/SiC复合材料,利用自主研发的高温散斑制作技术和改进的三维变形光学测试系统,基于数字图像相关技术测试原理,在高温小尺度下实时表征分析C/SiC复合材料的力学性能。运用X射线衍射和扫描电子显微镜测试分析了材料高温氧化情况、显微组织结构及裂纹扩展情况。研究表明:温度对C/SiC复合材料的性能有很大的影响。随着温度的升高,材料由脆性断裂逐渐转变为韧性断裂;材料的断裂韧性由7.98±0.12MPa·m^(1/2)减小到2.76±0.11MPa·m^(1/2),断裂强度从251.40±2.71MPa减小到86.94±1.82MPa。本文为掌握C/SiC复合材料的高温失效机理提供了一种有效的实验测试技术和方法。 In the present work, the carbon fiber reinforced silicon carbide matrix (C/SiC) composites were prepared by the precursor infiltration and pyrolysis method. The corresponding fracture characteristics of C/SiC composites were studied by combining single edge notch beam and digital image correlation (DIC) techniques at elevated temperatures. The full/local displacement, strain and cracking information of C/SiC composites can be real time monitored and recorded by DIC technique with our developed special speckle patterns at 1500℃ and 1600℃. The results show that the fracture toughness of C/SiC composites decreases from 7.98±0.12MPa · m1/2 to 2.76±0. 11MPa · m1/2 with the increasing of experimental temperatures. And their crack strength decreases from 251.40 ±2.71 MPa to 86. 94 ±1. 82MPa. The high-temperature oxidation, microscopic structure, and cracking growth of C/SiC composites were analyzed by X-ray diffraction and scanning electron microscope. The proposed experimental test method is useful for investigating the high-temperature mechanical characteristics of advanced C/SiC materials and failure mechanisms under different temperatures.
出处 《实验力学》 CSCD 北大核心 2016年第2期243-252,共10页 Journal of Experimental Mechanics
基金 国家自然科学基金(No.11102177) 湖南省自然科学基金杰出青年基金(No.14JJ1020) 国家重大科学仪器设备开发专项(2012YQ030075)资助
关键词 C/SIC复合材料 数字图像相关技术 断裂测试 1600℃高温环境 C/SiC composites digital image correlation fracture tests high-temperature environment
  • 相关文献

参考文献33

  • 1Mei H, Ji T, Chen X, et al. Complete recovery of high temperature oxidation resistance in carbon fiber reinforced SiC composites by a recoating repair methodology[J]. Materials Science and Engineering: A, 2015, 631:33- 37.
  • 2Ding K, Fu Y, Su H, et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining[J]. Journal of Materials Processing Technology, 2014, 21,1 (12) : 2900- 2907.
  • 3Chen X, Li Y, Shi C, et al. The dynamic tensile properties of 2D-C/SiC composites at elevated temperatures[J].International Journal of Impact Engineering, 2015, 79 : 75-82.
  • 4Yang C P, Jiao G Q, Wang B, et al. Mechanical degradation mechanisms of 2D-C/SiC composites: Influences of preloading and oxidation[J]. Journal of the European Ceramic Society, 2015, 35(10):2765-2773.
  • 5Luo Z, Zhou X, Yu J. High-temperature mechanical properties of thermal barrier coated SiC/SiC composites by PIP process with a new precursor polymer[J]. Surface and Coatings Technology, 2014, 258:146-153.
  • 6Shimoda K, Hinoki T, Kishimoto H, et al. Enchanced high-temperature performances of SiC/SiC composites by high densification and crystalline structure[J]. Composites Science and Technology, 2011, 71(3):326-332.
  • 7Yan K F, Zhang C Y, Qiao S R, et al. In-plane shear strength of a carbon/carbon composite at different loading rates and temperatures[J]. Materials Science and Engineering:A, 2011, 528(3):1458-1462.
  • 8Yan K F, Zhang C Y, Qiao S R, et al. Failure and strength of 2D-C/SiC composite under in-plane shear loading at elevated temperatures[J]. Materials b-Design, 2011, 32(6):3504-3508.
  • 9Wang H L, Zhang C Y, Liu Y S, et al. Temperature dependency of interlaminar shear strength of 2D-C/SiC composite[J]. Materials & Design, 2012, 36:172- 176.
  • 10Wang L, Liang J, Fang G. High temperature fracture behavior of ZrB2-SiC-graphite composite in vacuum and air [J]. Journal of Alloys and Compounds, 2015, 619:145-150.

二级参考文献20

  • 1吴大方,宋昊,李永亭,晏震乾.铝-镁合金5A06在瞬态热冲击条件下的力学性能研究[J].实验力学,2006,21(5):591-595. 被引量:8
  • 2R. Volkl, B. Fischer. Mechanical testing of ultra-high temperature alloys[J].Experimental Mechanics, 2004, 44(2):121-127.
  • 3M. Anwander, B. G. Zagar, B. Weiss et al.. Noncontacting strain measurements at high temperatures by the digital laser speckle correlation [J]. Experimental Mechanics, 2000, 40(1): 98-105.
  • 4O.J. Lockberg, J. T. Malmo, G. A. Slettemoen. Interferometric measurement of high temperature objects by electronic speckle pattern interferometry [J]. Appl. Opt. , 1985, 24(19) :3167-3172.
  • 5J. S. Lyons, J. Liu, M. A. Sutton. High temperature deformation measurement using digital image correlation[J]Experimental Mechanics, 1996, 36(1):64-70.
  • 6B. Pan, D. F. Wu, Y. Xia. High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation[J].Optics and Lasers in Engineering, 2010, 48(9): 841-848.
  • 7B. M. B. Grant, H. J. Stone, P. J. Withers et al.. High temperature strain field measurement using digital image eorrelation[J]. J. Strain Analysis for Engineering Design, 2009, 44(4):263-271.
  • 8B. Pan, K. M. Qian, H. M. Xieet al.. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J].Measurement Science and Technology, 2009, 20(6): 062001.
  • 9B. Pan, H. M. Xie, B. Q. Xu et al.. Performance of sub-pixel registration algorithms in digital image correlation[J]. Measurement Science and Technology, 2006, 17(6) : 1615-1621.
  • 10B. Pan. Reliability-guided digital image correlation for image deformation measurement[J].Appl. Opt. , 2009, 48 (8): 1535-1542.

共引文献48

同被引文献51

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部