摘要
利用奇异值分解和广义奇异值分解,得到了矩阵方程AX=B,XC=D的(M,N)-反对称解存在的充要条件,给出了通解表达式及其最佳逼近问题的解,并提供了数值例子来说明理论结果的正确性.
In this paper,based on the singular value decomposition (SVD)of a matrix and the generalized singular value decomposition (GSVD)of a matrix pair,we establish the solvabili-ty conditions of matrix equations AX=B,XC=D for (M,N)-antisymmetric matrices,give the expressions of general solutions and the solution of corresponding optimal approximation problem,and give a numerical example to verify the correctness of the theoretical results.
出处
《陕西科技大学学报(自然科学版)》
2016年第3期175-179,共5页
Journal of Shaanxi University of Science & Technology
基金
湖南省教育厅科研计划项目(15C0120)
关键词
(M
N)-反对称矩阵
最佳逼近
广义奇异值分解
(M,N)-antisymmetric matrix
optimal approximation
generalized singular value decomposition