期刊文献+

矩阵方程AX=B,XC=D的(M,N)-反对称解

The(M,N)-antisymmetric solutions of the matrix equations AX=B,XC=D
下载PDF
导出
摘要 利用奇异值分解和广义奇异值分解,得到了矩阵方程AX=B,XC=D的(M,N)-反对称解存在的充要条件,给出了通解表达式及其最佳逼近问题的解,并提供了数值例子来说明理论结果的正确性. In this paper,based on the singular value decomposition (SVD)of a matrix and the generalized singular value decomposition (GSVD)of a matrix pair,we establish the solvabili-ty conditions of matrix equations AX=B,XC=D for (M,N)-antisymmetric matrices,give the expressions of general solutions and the solution of corresponding optimal approximation problem,and give a numerical example to verify the correctness of the theoretical results.
作者 刘巍 王柏育
出处 《陕西科技大学学报(自然科学版)》 2016年第3期175-179,共5页 Journal of Shaanxi University of Science & Technology
基金 湖南省教育厅科研计划项目(15C0120)
关键词 (M N)-反对称矩阵 最佳逼近 广义奇异值分解 (M,N)-antisymmetric matrix optimal approximation generalized singular value decomposition
  • 相关文献

参考文献16

  • 1R.A.Horn,C.R.Johnson.矩阵分析(英文版)[M].北京:人民邮电出版社,2005.
  • 2K. W. E. Chu. Singular value and generalized singular val ue decomposition and the solution of linear matrix equa tions[J]. Linear Algebra Appl. , 1987,88-89 : 83-98.
  • 3S. K. Mitra. A pair of simultaneous linear matrix equations AIX~I = (Jl, AzXlSz = C~ and a matrix programming problem[J]. Linear Algebra Appl. , 1990,131 : 107-123.
  • 4S. K. Mitra. The matrix equations AX = C, XB= D[J]. Linear Algebra Appl. , 1984,59 : 171-181.
  • 5A. Navarra, P. L. Odell, D. M. Yong. A representation of the general common solution to the matrix equations AI XB~ = C1, As XB~ with applications[J]. Computers and Mathematics with Applications, 2001,41 (7-8) : 929-935.
  • 6W. F. Trench. Inverse eigenproblems and associated approximation problems for matrices with generalized sym- metry or skew symmetry [J].Linear Algebra Appl. , 2004,380 : 199-211.
  • 7X. Y. Peng, X. Y. Hu,L. Zhang. An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations A1XB1 = C1, A2 XB2 = Cz[J]. Applied Mathematics and Computation, 2006,183 (2):1 127-1 137.
  • 8F. L. Li,X. Y. Hu,L. Zhang. The generalized reflexive so- lution for a class of matrix equations (AX= B, XC~D) [J]. Acta Mathematica Scientia, 2008,28B(1) : 185-193.
  • 9S. F. Yuan,A. P. Liao,Y. Lei,Least squares Hermitian so- lution of the matrix equation (AXB, CXD) :(E, F) with the least norm over the skew field of quaternions[J]. Math. Comput. Modelling,2008,48(1-2):91-100.
  • 10Y. Y. Qiu,A. D. Wang. Least squares solutions to the e- quations AXE B, XC~ D with some constraints[J]. Ap- plied Mathematics and Computation, 2008,204 (2):872- 880.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部