期刊文献+

人体下肢行走关节连续运动表面肌电解码方法 被引量:8

Surface Electromyography Decoding for Continuous Movement of Human Lower Limb During Walking
下载PDF
导出
摘要 为实现人体下肢步态动作的连续识别,提出了一种利用表面肌电信号进行下肢关节运动角度连续解码的方法。首先利用光学运动捕捉实现下肢关节运动角度的计算,然后采集下肢运动相关主力肌肉的表面肌电信号并提取其活动强度信息;在此基础上,基于受限玻尔兹曼机构建深度自动编码器(DAE),实现多路表面肌电信号强度时间序列的低维空间编码和最优特征提取;最后,利用BP神经网络建立特征量与关节矢状面运动角度之间的非线性回归模型。实验结果表明:该方法提取的信号特征信息优于传统的主量分析方法,采用提出的模型能够更精确地估计下肢关节连续运动角度,其估计值与真实值的均方误差较传统方法降低25%-35%。研究结果为人机交互接口技术的开发、实现下肢可穿戴智能装备的生物电连续控制、提高人机运动平稳性奠定了基础。 To estimate the continuous movement of human lower limb during walking,a regression model which relates the surface electromyography(EMG)and the movement variables of the lower limb joints is constructed.The joint movement angles of lower limb are calculated accurately based on optical motion capture system,then the surface EMG signals are sampled from the main muscles directly concerned with the lower limb motion;the muscle activities are extracted,and a deep auto-encoder(DAE)network with restricted Boltzmann machines(RBM)is realized,by which the multi-channel processed surface EMG signals are encoded in low dimensional space and the optimal features are extracted.The nonlinear model mapping the EMG features to sagittal surface movement angles is established with back propagation(BP)neural network.Extensive experiments indicate that the features extracted with the deep auto-encoder(DAE)network are outperformed principal components analysis(PCA);the movement angles of lower limb joints can be estimated continuously and precisely with the regression models and the mean square error(MSE)between the estimated values and real values is reduced by 25%-35%compared with the traditional method.The proposed strategy is expected to develop humanmachine interaction interface technology for the achievement of continuous bioelectric control andthe improvement of motion stability between human and machine,especially for lower limb wearable intelligent equipment.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第6期61-67,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重大研究计划资助项目(91420301)
关键词 表面肌电信号 连续运动识别 玻尔兹曼机 深度自动编码器 BP神经网络 surface electromyography continuous motion recognition restricted Boltzmann machines deep auto-encoder back propagation network
  • 相关文献

参考文献19

  • 1DAZ I, GIL J J, SNCHEZ E. Lower-limb robotic rehabilitation: literature review and challenges[J].Journal of Robotics, 2011, 2011: Article ID 759764.
  • 2杨启志,曹电锋,赵金海.上肢康复机器人研究现状的分析[J].机器人,2013,35(5):630-640. 被引量:79
  • 3SANKAI Y. HAL: hybrid assistive limb based on cybernics [M]∥Robotics Research. Berlin, Germany: Springer, 2011: 25-34.
  • 4PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Feature reduction and selection for EMG signal classification[J].Expert Systems with Applications, 2012, 39(8): 7420-7431.
  • 5PHINYOMARK A, QUAINE F, CHARBONNIER S, et al. Feature extraction of the first difference of EMG time series for EMG pattern recognition[J].Computer Methods and Programs in Biomedicine, 2014, 117(2): 247-256.
  • 6TSAI A C, LUH J J, LIN T T. A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition[J].Expert Systems with Applications, 2015, 42(7): 3327-3341.
  • 7LAUER R, SMITH B, BETZ R. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy[J].IEEE Transactions on Biomedical Engineering, 2005, 52(9): 1532-1540.
  • 8DING Q C, XIONG A B, ZHAO X G, et al. A novel EMG-driven state space model for the estimation of continuous joint movements [C]∥IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA: IEEE, 2011: 2891-2897.
  • 9ZHANG F, LI P F, HOU Z G, et al. sEMG-based continuous estimation of joint angles of human legs by using BP neural network[J].Neurocomputing, 2012, 78(1): 139-148.
  • 10戴虹,钱晋武,张震,沈林勇,章亚男.GRNN在肌电预测踝关节运动中的应用[J].仪器仪表学报,2013,34(4):845-852. 被引量:30

二级参考文献114

  • 1胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计[J].中国临床康复,2004,8(34):7754-7756. 被引量:27
  • 2罗志增,杨广映.基于触觉和肌电信号的假手模糊控制方法研究[J].机器人,2006,28(2):224-228. 被引量:8
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 5MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 6MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 7李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 810 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 9Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 10Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.

共引文献885

同被引文献45

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部