期刊文献+

废气再循环对车用汽油机热功转换过程的影响 被引量:3

The Influences of EGR on Heat-Work Conversion Process of Automotive Gasoline Engines
下载PDF
导出
摘要 为提高车用汽油机部分负荷下的燃油经济性,探讨了废气再循环(EGR)对汽油机热功转换过程的影响。基于某款汽油机的性能试验数据,搭建并标定其仿真模型,研究了多种部分负荷工况下EGR对汽油机性能的影响。结果表明:就换气循环而言,随着EGR率的增大,进气压力增大,泵气平均有效压力(PMEP)减小,未冷却的EGR对PMEP减小的幅度更大;就高压循环而言,燃烧温度下降导致传热损失下降,从而使高压循环热效率增加。由缸内热平衡分析可知,有效热效率的提高主要依赖于缸内传热损失的减小,其次才是泵气损失的减小。在1 300r/min、0.295MPa时,采用20%的EGR率可以使有效热效率提升4.5%。 In order to improve the fuel economy of automotive gasoline engines under partial load, the influences of exhaust gas recirculation (EGR) on the heat-work conversion process in a gasoline engine were discussed. Based on the performance test data of a gasoline engine, the simulation model was built and calibrated. And then the effects of EGR rate on the gasoline engine performances under various partial load operating conditions were studied. The results show that as for the low-pressure cycle, with the increase of EGR rate, the intake pressure will increase while the PMEP reduce; the PMEP can reduce more with the un-cooled EGR adopted. As for the highpressure cycle, the heat transfer loss as well as its proportion will decrease due to the falling of combustion temperature, which result in the increase of high-pressure cycle thermal efficiency. The analysis of in cylinder heat balance shows that the improvement of effective thermal efficiency mainly relies on the decrease of in-cylinder heat transfer loss, followed by the decrease of pumping loss. At the operating condition of 1 300 r/min and 0. 295 MPa, the effective thermal efficiency of the gasoline engine can be increased by 4.5 G with a 20 G of EGR rate.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2016年第3期48-54,共7页 Chinese Internal Combustion Engine Engineering
基金 国家"九七三"重点基础研究发展计划项目(2011CB707201) 国家自然科学基金项目(51376057) 湖南大学中央高校基本科研业务费资助项目
关键词 内燃机 汽油机 热功转换效率 废气再循环 泵气损失 IC engine gasoline engine heat-work conversion efficiency EGR pumping loss
  • 相关文献

参考文献9

  • 1FUJ Q, LIU J P, FENG R H, et al. Energy and exergy analysis on gasoline engine based on mapping characteristics experiment[J]. Applied Energy, 2013,102(2) :622-630.
  • 2吴达,许敏,李铁.废气再循环对增压直喷汽油机热效率的影响[J].车用发动机,2013(3):50-55. 被引量:15
  • 3IVANI Z, AYALA F, GOLDWITZ J, et al. Effects of hydrogenenhancement on efficiency and NOc emissions of lean and EGR diluted mixtures in a SI engine[C]//SAE Paper[S. 1. ], 2005-01- 0253,2005.
  • 4GRANDIN B, kNGSTROM H. Replacing fuel enrichment in a turbo charged SI engine: lean burn or cooled EGR[C]//SAE Paper[S. 1. ], 1999,1999-01-3505.
  • 5CAIRNS A, BLAXILL H. The effects of combined internal and external exhaust gas reeirculation on gasoline controlled auto-ignition[C] //SAE Paper[S. 1. ] ,2005,2005-01-0133.
  • 6ALGER T, GINGRICH J, ROBERTS C. Cooled exhaust-gas recirculation for fuel economy and emissions improvement in gasoline engines[J].International Journal of Engine Research, 2011,12(3) :252-264.
  • 7HOEPKE B, JANNSEN S, KASSERIS E, et al. EGR effects on boosted SI engine operation and knock integral correlation [J]. SAEInt. J. Engines,2012,5(2):547-559.
  • 8TANG Q J, LIU J P, ZHAN Z S, et al. Influences on combustion characteristics and performances of EGR vs. lean burn in a gasoline engine[C]//SA[S. 1. ]S. 1.1,2013,2013 01-1125.
  • 9TAYMAZ I. An experimental heat reiection diesel enuine[J].study of energy balance in low Energy,2006,31(2) :364-371.

二级参考文献12

  • 1朱明善 刘颖 林兆庄 彭晓峰.工程热力学[M].北京:清华大学出版社,1994..
  • 2Bjoern Hoepke, Stefan Jannsen, Emmanuel Kasseris, et al. Emmanuel Kasseris EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation [J]. SAE Int. J. Engines, 2012,5(2) 547-559.
  • 3Oldrich Vitek, Jan Macek, Miloas Polasek. Compari- son of Different EGR Solutions [C]. SAE Paper 2008- 01-0206.
  • 4Alta A Knizley, Kalyan K Srinivasan,Sundar R Krish- nan,et al. Fuel and Diluents Effects on Entropy Gener- ation in AConstant Internal Energy-volume (uv) Com- bustion Process [J]. Energy, 2012,43(1) .. 315-328.
  • 5Shyani R G, CatonJ A. A Thermodynamic Analysis ofthe Use of EGR in SI Engines Including the Second Law of Thermodynamics [J] Journal of Automobile Engineering, 2009, 223(1) : 131-149.
  • 6Ghazikhani M, Feyz M E A. Joharchi. Experimental Investigation of the Exhaust Gas Recirculation Effects on Irreversibility and Brake Specific Fuel Consumption of Indirect Injection Diesel Engines [J]. Applied Ther- mal Engineering, 2010,30(13) ..1711-1718.
  • 7Alger T, Gingrich J, Roberts C. Cooled Exhaust-gas Recirculation for Fuel Economy and Emissions Im- provement in Gasoline Engines [J]. International Jour- nal of Engine Research, 2011,12(3) :252-264.
  • 8Shudo T, Nabetani S, Nakajima Y. Analysis of Degree of Constant Volume and Cooling Loss in a Hydrogen Premixed Combustion Engine[J]. Transaction of Socie- ty of Automotive Engineers of Japan, 2000, 31 (4): 5-10.
  • 9Rezapour K. Availability Analysis of ABi-fuel SIEngine Model for Improvement Its Performance[J]. IJTPE Journal, 2012,4(2) ..115-121.
  • 10Rakopoulos C D, Giakoumis E G. Second-law Analy- ses Applied to Internal Combustion Engines Opera- tion [J]. Progress in Energy and Combustion Science, 2006, 32(1) :2-47.

共引文献14

同被引文献9

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部