期刊文献+

基于多目标遗传算法NSGA-Ⅱ的串联齿轮机构变位系数优化

Modification Coefficient Optimization of Series Gear Mechanism based on Multi-objective Genetic Algorithm NSGA-Ⅱ
原文传递
导出
摘要 为研究串联齿轮变位系数的合理分配问题,以中心距偏差和齿顶高变动系数为优化目标,同时考虑加工时不发生根切、齿顶不过薄、保证一定的重合度和不产生过渡曲线干涉等4个约束条件,建立了多目标优化模型。然后采用多目标遗传算法NSGA-Ⅱ对目标函数进行求解,最终实现了串联齿轮变位系数的优化。研究表明,用这种方法进行串联齿轮机构变位系数的分配行之有效,优化后的齿轮变位系数符合工程实际,很好地满足了设计要求。 In order to rationally allocate modification coefficients of a series gear mechanism,a optimization model based on multi-objective genetic algorithm is set up. In the model,the objectives are set as the center distance deviation and variation coefficient of addendum height,and four constraint conditions are taken into account,such as no undercutting,no too thin addendum thickness,no too small contact ratio,no transitional curve interference. A multi-objective genetic algorithm,namely NSGA-Ⅱ method is used to solve the objective function. The modification coefficients of the series gear mechanism are optimized. As the results show,this method is especially efficient to be used to optimize the mechanism modification coefficients. The optimized coefficients accord with engineering practice and fulfill well the design demand.
出处 《机械传动》 CSCD 北大核心 2016年第6期123-125,148,共4页 Journal of Mechanical Transmission
关键词 齿轮 变位系数 多目标优化 遗传算法 Gear Modification coefficient Multi-objective optimization Genetic algorithm
  • 相关文献

参考文献5

二级参考文献33

  • 1师瑞锋 方卫国.遗传算法在飞机方案优化中的应用研究[J].北京航空航天大学学报,2001,27:21-24.
  • 2邱宣怀主编.机械设计.北京:高等教育出版社,1991,167-204
  • 3成大先主编.机械设计手册(第三版,第三卷).北京:化学工业出版社,1997
  • 4孟彩芳编著.机械原理电算分析与设计.天津:天津大学出版社,2000,144-159
  • 5刘惟信主编.机械最优化设计.北京:清华大学出版社,1993,230-233
  • 6陈立周主编.机械优化设计方法.北京:冶金工业出版社,1999,151-153
  • 7Santoro, Esamuele. Global methods in multi-objective optimization and their application to a mechanical design problem[J]. Computers in Industry, 1991,18(2) :169 - 175.
  • 8Tamaki, Hisashi. Multi-objective optimization by genetic algorithms: a review[ C ]. In : Proceedings of the IEEE Conference on Evolutionary, ICEC96:517-522.
  • 9DebK, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA- II[ J]. IEEE Transactions on Evolutionary Computation, 2002,6(2) :182 -197.
  • 10Knowles J D, Come D W. Approximating the non-dominated front using the Pareto archived evolution strategy[ J]. Evolutionary Computation,2000,8 (2) : 149 - 172.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部