期刊文献+

高岭土基地质聚合物聚合动力学初探 被引量:1

Reaction kinetics of kaolinite-based geopolymer with different active SiO_2/Al_2O_3 ratios
下载PDF
导出
摘要 以偏高岭土为原料,掺杂一定量的活性SiO2和Al2O3制备了地质聚合物。根据所测不同的Si/Al摩尔比体系聚合反应过程中电导率随时间的变化关系,将聚合过程分为4个阶段:碱溶阶段、硅铝凝胶基团形成阶段、聚合反应阶段和网络状结构优化阶段。对聚合反应阶段建立动力学模型,计算出不同的Si/Al摩尔比体系聚合物的表观活化能,并测定了各护龄期的抗压强度值。研究结果表明,Si/Al摩尔比为1∶1时,G1-MK试样的表观活化能最小,所测抗压强度值最大;Si/Al摩尔比为1.6和0.8时,试样表观活化能最大,所测抗压强度值最小。而聚合反应表观活化能的大小间接反应了聚合反难易程度,说明所提出的动力学模型有一定的参考价值。 Geopolymers, prepared from metakaolin, active SiOe and A12Oa. According to the conductivity changing varying as the time, the process of polymerization reaction could be divided into four stages, alkali solution stage, aluminosilicate gel forming stage, polymerization stage, net structure forming stage. Kinetic models were established based on the stage of polymerization which this paper had put forward. The results show that the apparent activation energy of samples G1-MK which the Si/A1 ratios is closer to 1 was the smal- lest and the compressive strength was the biggest. The apparent activation energy is maxi- mum when the Si/A1 ratios is to 1.6 and 0.8 and the compressive strength was the smallest. The apparent activation energy of polymerization reaction had a close relationship with the degree of the polymerization reaction, which had been validated on the compressive strength of samples.
出处 《长沙理工大学学报(自然科学版)》 CAS 2016年第2期101-106,共6页 Journal of Changsha University of Science and Technology:Natural Science
基金 湖南省自然科学基金资助项目(14JJ4036) 电力与交通材料保护湖南省重点实验室开放基金项目(2015CL04)
关键词 地质聚合物 不同硅铝比 聚合反应 电导率 动力学模型 表观活化能 geopolymer diFferent SiO2 or Al2O3 ratios polymerization conductivity kinetic models apparent activation energy
  • 相关文献

参考文献13

  • 1Davidovits J ,Comrie D C.Geopolymeric concretes for environmental protection[J]. British Ceramic Trans- actions, 1990,89 (6) ; 195-202.
  • 2. HE Pei-gang, Dechang Jia. Interface evolution of the Cf/leucite composites derived from Cf/geopolymer composites[J]. Ceramics International, 2013,39 ( 2 ) : 1203-1208.
  • 3Kolani B, Buffo-Lacrre REL. Hydration of slag-blen- ded cements[J].Cem Concr Compos, 2012,34 (9) : 1009-1018.
  • 4Merzouki T, Bouasker M.Contribution to the model- ing of hyaration and chemical shrinkage of slag-blen- ded cement at early stage[J].Constr Buil Master, 2013,44(2) : 368-380.
  • 5Deschner F, Winnefeld F. Hydration of Portland ce- ment with high replacement by siliceous flyash[J]. Cem Concr Compos, 2012,42 (10) : 1389-1400.
  • 6WANG X Y, LEE H S. Modeling the hydration of concrete incorporating fly ash or slag[J].Cement and Concrete Research, 2010,40(7) : 984-996.
  • 7Benjamin C McLellan.Costs and carbon emissions for geopolymer pastes in comparison to ordinaryportland cement [J]. Journal Cleaner Production, 2011, 19 (10) : 1080-1090.
  • 8HAO Hui-cong, LIN Kae-long. Utilization of solar panel waste glass for metakaolinitbased geopoiy mer synthesis[J].Environmental Progress and Sus- tainable Energy,2013,32(3) :797-803.
  • 9SHIU Hau-shing, LIN Kaedong. EEects of foam a- gent on characteristics of thin-film transistor liquid crystal display waste glass-metakaolin-hased cellular geopolymer[J].Environmental Progress and Sustain- able Energy,2014,33(2) :538-550.
  • 10Provis J L,Walls P A,Van Deventer J S J.Geopoly- merisations kinetics 3: effect of Cs and Sr salt[J]. Chemical Engineering Science, 2008,63 ( 18 ) : 4480 4489.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部