期刊文献+

保险和金融风险相依的破产概率研究 被引量:1

The Ruin Probability with Dependent Insurance and Financial Risks
下载PDF
导出
摘要 考虑一家保险公司暴露于保险风险和金融风险两种风险环境,分别用两组随机变量量化这两种风险,用离散时间风险模型表述保险公司盈余过程,研究了在保险风险和金融风险渐近独立相依假设下的保险公司有限时间破产概率问题。当保险风险的分布属于次指数分布族或长尾分布族时,分别推导了有限时间破产概率的渐近等价关系式,这将简化保险公司在风险评估中的计算问题。 Considering an insurance company exposed to an environment that contains insurance and financial risks, these two kinds of risks were quantified by two sets of random variables and the surplus process of the insurance company was described by a discrete-time risk model. This paper investigated the finite-time ruin probability with asymptotic independence insurance and financial risks. When the distributions of the insurance risk belong to the subexponential distribution class or the long-tailed distribution class, we derived some asymptotic equivalent relationships for the finite- time ruin probability, respectively. These will simplify the calculation of the insurance companies in the risk assessment.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第5期135-140,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家社会科学基金资助项目(14BJY200)
关键词 保险风险 金融风险 破产概率 次指数 长尾 insurance risk financial risk ruin probability subexponentiality long tail
  • 相关文献

参考文献14

  • 1NYRHINEN H. On the ruin probabilities in a general economic environment [ J ]. Stochastic Processes and their Applications, 1999,83(2) :319 -330.
  • 2TANG Q,TSITSIASHVILI G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy- tailed insurance and financial risks [ J ]. Stochastic Processes and their Applications ,2003,108 (2) :299 -325.
  • 3Yi-qingChen Xiang-shengXie.The Finite Time Ruin Probability with the Same Heavy-tailed Insurance and Financial Risks[J].Acta Mathematicae Applicatae Sinica,2005,21(1):153-156. 被引量:4
  • 4CHEN Y, SU C. Finite time ruin probability with heavy-tailed insurance and financial risks [ J ]. Statistics & Probability Letters, 2006,76(16) :1812 - 1820.
  • 5SHEN X, LIN Z, ZHANG Y. Uniform estimate for maximumof randomly weighted sums with applications to ruin theory [ J 1. Methodology and Computing in Applied Probability,2009,11 (4) :669 -685.
  • 6CHEN Y, NG K W, YUEN K C. The maximum of randomly weighted sums with long tails in insurance and finance J ]. Stochas- tic Analysis and Applications ,2011,29(6) : 1033 - 1044.
  • 7Min ZHOU,Kai-yong WANG,Yue-bao WANG.Estimates for the Finite-time Ruin Probability with Insurance and Financial Risks[J].Acta Mathematicae Applicatae Sinica,2012,28(4):795-806. 被引量:8
  • 8GELUK J,TANG Q. Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables[ J]. Journal of The- oretical Probability, 2009,22 (4) : 871 - 882.
  • 9CHEN, Y. The finite-time ruin probability with dependent insurance and financial risks [ J ]. Journal of Applied Probability, 2011,48(4) :1035 - 1048.
  • 10YANG Y,WANG K,LEIPUS R,et al. A note on the max-mum equivalence of randomly weighted sums of heavy-tailed random variables [ J ]. Nonlinear Analysis : Modelling and Control, 2013,18 ( 4 ) :519 - 525.

二级参考文献7

  • 1王岳宝,成凤炀,杨洋.关于重尾分布间的控制关系及其应用[J].应用概率统计,2005,21(1):21-30. 被引量:11
  • 2Cai, J., Tang, Q.H. On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. Journal of Applied Probability, 41:117-130 (2004).
  • 3Cline, D.B.H., Samorodnitsky, G. Subexponentiality of the product of independent random variables.Stochastic Processes and their Applications, 49:75-98 (1994).
  • 4Embrechts, P., Kliippelberg, C.Mikosch, T. Modelhng Extremal Events for Insurance and Finance.Springer-Verlag, Berlin, 1997.
  • 5Nyrhinen, H. On the ruin probabilities in a general economic environment. Stochastic Processes and their Applications, 83:319 -330 (1999).
  • 6Nyrhinen, H. Finite and infinite time ruin probabilities in a stochastic economic environment. Stochastic Processes and their Applications, 92:265-285 (2001).
  • 7Tang, Q. H., Tsitsiashvili, G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Processes and their Applications. 108:299-325 (2003).

共引文献9

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部