摘要
给定图G,Ramsey数R(G)是最小的正整数N,满足对完全图K_N的边任意红蓝着色,则或者存在红色子图G或者存在蓝色子图G.扫帚图B_(k,m)是将星图K_(1,k)的中心点与路Pm的一个端点黏成一个点得到的树图.由此得到,当k为大于1的正整数时,R(B_(k,2k-1))=4k-2且R(B_(k,4))=2k+3.
For a given graph G,Ramsey number R(G)is the smallest integer N such that any red/blue edge-coloring of K_N contains a red copy or a blue copy of G.Let broom Bk,m be a tree obtained by identifying the central vertex of a star K_(1,k) with an end-vertex of Pm.It is proven that R(B_(k,2k-1))=4k-2and R(B_(k,4))=2k+3for integer k1.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第5期812-814,共3页
Journal of Tongji University:Natural Science