期刊文献+

基于静态权值组合集成模型的WSN时钟偏差估计 被引量:1

Clock bias estimation for WSN based on static weights integration model
下载PDF
导出
摘要 针对无线传感器网络(WSN)时钟同步精度低、复杂度高等问题,提出了一种基于静态权值组合集成模型的时钟偏差预测方法。对传感器节点的时间戳观测值进行有放回抽样,将面向回归问题的Ada Boost.RT集成学习算法的误差函数和阈值调整方法进行改进,并以改进的Ada Boost.RT算法作为集成框架,采用DPNN作为弱学习机构建集成局域模型对时间偏差进行有效预测。实验表明,对于长期预测,Ada Boost.RT模型和改进型Ada Boost.RT模型的预测效果相对于DPNN全局模型提升了20%。此外,在长期观测和短期观测两种情况下,Ada Boost.RT改进型模型的预测效果要优于Ada Boost.RT模型,能够更有效地减小时间估计偏差。 Aiming at the low accuracy and high complexity in the clock synchronization procedure for WSN wireless sensor network,this paper proposed a clock error prediction method based on static weight composite integration model. Sample back into the observed time stamp value of sensor nodes,and then improved the error function and threshold adjustment method of the algorithm for the regression problems based Ada Boost. RT integrated learning algorithm. Lastly,the improved algorithm would be used as an integration framework,and DPNN would be used as weak machine learning to build integrated local model to effectively predict the time deviation. Experiments show that for long-term prediction,prediction effect of the Ada Boost. RT model and the improved Ada Boost. RT model increased by 20% compared with DPNN global model. In addition,in both the long-term and short-term observations,the predicted effect of the improved Ada Boost. RT model is superior to Ada Boost. RT model,and it can more effectively reduce clock estimation bias of the WSNs.
出处 《计算机应用研究》 CSCD 北大核心 2016年第6期1826-1829,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61273219) 重庆市教委科学技术研究资助项目(KJ131108 KJ1401029) 重庆三峡学院科学研究计划资助项目(14QN30)
关键词 无线传感器网络 时钟偏差 AdaBoost.RT模型 集成局域模型 WSN clock deviation Ada Boost RT model integrated local model
  • 相关文献

参考文献15

  • 1Lai Linhong,Liu Fei.The electro-hydraulic synchronization position servo system based on nonlinear and non-gaussian time sequence prediction model[J].Applied Mechanics and Materials,2014,472(2):306-311.
  • 2常光强,樊晓平,刘少强.基于时间同步的无线传感器网络覆盖控制优化算法[J].计算机应用研究,2012,29(1):35-37. 被引量:3
  • 3Chatterjee A,Venkateswaran P.An efficient statistical approach for time synchronization in wireless sensor networks[J].International Journal of Communication Systems,2016,29(4):722-733.
  • 4Fang Mingjie,Sun Yuping,Zhang Xiaohui,et al.ELOTS:energy-efficient local optimization time synchronization algorithm for WirelessHART networks[C] //Proc of the 8th Annual IEEESystems Conference.[S.l.] :IEEE Press,2014:402-406.
  • 5师超,仇洪冰,王俊义,李晓艳.基于Gossip算法的无线传感器网络时间同步[J].上海交通大学学报,2014,48(3):351-356. 被引量:4
  • 6李倩,战兴群,王立端,翟传润.GPS/INS组合导航系统时间同步系统设计[J].传感技术学报,2009,22(12):1752-1756. 被引量:20
  • 7Schapire R E.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.
  • 8Polikar R.Ensemble based systems in decision making[J].Circuits and Systems Magazine,2006,6(3):21-45.
  • 9Geman S,Bienenstock E,Doursat R.Neural networks and the bias/variance dilemma[J].Neural Computation,1992,4(1):1-58.
  • 10Schwenker F.Ensemble methods:foundations and algorithms[M].[S.l.] :CRC Press,2012.

二级参考文献35

共引文献24

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部