期刊文献+

光场图片中基于Plenoptic的尺度不变特征描述符 被引量:1

Plenoptic based scale-invariant feature descriptor in light field images
下载PDF
导出
摘要 为了使光场图片在旋转和缩放等操作下保持不变,基于Plenoptic函数的图片表达方法提出一种尺度不变特征描述符。首先,对Plenoptic函数与光场进行了描述,并用七维数据来表示时序图片序列;其次,对Plenoptic函数的规范化进行了分析,并给出了三维场景点向二维和三维Plenoptic空间的映射方法;接下来,分析了光场中图片在旋转和缩放操作下的尺度不变特性,并给出了相应的变换算法;最后,在提取尺度不变的特征向量时通过融合函数降低了参数调整所需的计算量。实验表明,提出的尺度不变特征描述符可以更好地描述图片,从而在基于描述符的操作中具有更优的性能。 In order to keep scale-invariant of an image in light field under rotation and scaling,this paper proposed a scale-invariant feature descriptor for images based on Plenoptic function. Firstly,it analyzed Plenoptic function and light field,and used a seven-dimensional data to represent time-ordered sequence of images. Secondly,it analyzed the regularity of the Plenoptic function,and gave that how to map a 3-dimensional point in a scene to a 2-dimensional or 3-dimensional plane in Plenoptic space.Thirdly,it analyzed the scale-invariant features of images under rotation and scaling in light field,and proposed corresponding transform algorithms. Finally,while extracting scale-invariant vector,it decreased the computation with proposed integration function. The experiments show that,the proposed scale-invariant feature descriptor can better represent an image,and has better performance than related works.
作者 王剑 刘永俊
出处 《计算机应用研究》 CSCD 北大核心 2016年第6期1913-1915,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(6140060035)
关键词 计算机视觉 图像处理 特征描述符 尺度不变 computer vision image processing feature descriptor scale-invariant
  • 相关文献

参考文献16

  • 1王军,张明柱.图像匹配算法的研究进展[J].大气与环境光学学报,2007,2(1):11-15. 被引量:44
  • 2谢树煜,陈倩,朱虹.实时视频对象识别与计数系统的模型和算法设计[J].清华大学学报(自然科学版),2001,41(7):61-64. 被引量:21
  • 3陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 4Harris C,Stephens M.A combined corner and edge detector[C] //Proc of Alvey Vision Conference.1988:15-50.
  • 5Calonder M,Lepetit V,Strecha C,et al.BRIEF:binary robust independent elementary features[C] //Proc of the 11th European Conference on Computer Vision.Berlin:Springer,2010:778-792.
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Bishop T E,Favaro P.The light field camera:extended depth of field,aliasing,and superresolution[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2012,34(5):972-986.
  • 8Levoy M,Ng R,Adams A,et al.Light field microscopy[J].ACM Trans on Graphics,2006,25(3):924-934.
  • 9Adelson E H,Wang J Y A.Single lens stereo with a plenoptic camera[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1992,14(2):99-106.
  • 10Bolles R C,Baker H H,Marimont D H.Epipolar-plane image analysis:an approach to determining structure from motion[J].International Journal of Computer Vision,1987,1(1):7-55.

二级参考文献20

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2陈倩.毛主席纪念堂视频监测系统设计与实现[M].北京:清华大学,1997..
  • 3[11]Sheikholeslami G,Chang W,Zhang A.Semantic clustering and querying on heterogeneous features for visual data[C].Proc.of the ACM Multimedia.Bristol:ACM Press.1998,3-12.
  • 4[12]Fung C Y,Loe F K.Learning primitive and scene semantics of images for classification and retrieval[C].Proc.of the ACM Multimedia.Orlando:ACM Press,1999,2:9-12.
  • 5[13]Vailaya A,Zhong Y,Jaing A K.A hierarchical system for efficient image retrieval[C].Proc.of the 13th Int.Conf.on Pattern Recognition.Washington:IEEE Computer Society,1996,356-360.
  • 6边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 7陈倩,学位论文,1997年
  • 8朱志刚,中国图象图形学报,1996年,1卷,2期,101页
  • 9Pentland A.Looking at people:Sensing for ubiquitous and wearable computing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (1):107 ~ 119.
  • 10Peter N Belhumeur,Joao P Hespanha,David J Kriengman.Eigenfaces vs fisherfaces:recognition using class specific linearprojection[J].IEEE Transactions on Pattern Anal ysis and Machine Intelligence,1997,19 (7):711 ~ 720.

共引文献123

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部