期刊文献+

具有潜伏期感染的离散SEIR模型的动力学性态

Dynamic Behavior of a Discrete SEIR Epidemic Model with Latent Infection
下载PDF
导出
摘要 主要研究了一类考虑潜伏期和染病期都具有感染性的离散SEIR传染病模型的动力学性态.定义了基本再生数,利用数学归纳法得到了模型解的非负性和有界性.通过构造合理的Lyapunov函数证明了平衡点的全局渐近稳定性.最后通过数值模拟验证了我们的理论结果. The dynamical behavior of discrete SEIR epidemic model with latent infection is studied.The basic reproductive number is defined,the nonnegativity and boundless of solutions are analyzed by inductive method.It is proved that the equilibrium is globally asymptotically stable by constructing reasonable Lyapunov function.Numerical simulations are done to show our theoretical results.
作者 马霞 陈娜
出处 《太原师范学院学报(自然科学版)》 2016年第1期19-22,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 太原工业学院科技处基金(2015LQ19)
关键词 离散SEIR传染病模型 向后欧拉法 潜伏期感染 稳定性 Lynapunov函数 discrete SEIR model backward euler method latent infection stability Lyapunov function
  • 相关文献

参考文献11

  • 1ZHANG T,TENG Z. Permanence and existction for a nonautonomous SIRS epidemic model with time de-lay,Appl[J]. Math. Model, 2009,33 .. 1058-1071.
  • 2LI C,SAI C, YANG S. Permanence of an SIR epidemic model with delay dependent birth rate and distributed time delay[J]. Applied Mathematics and Computation,2011,218.. 1682-1693.
  • 3BAI Z. Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contast rate[J]. Nonlinear Analy sis:Real world Applicationg,2012,13(3) ..1060-1068.
  • 4CAO H, ZHOU YC. The discrete age-structured SEIT model with application to tuberculosis transmission in China[J]. Math. Comput. Model, 2012,55 (3) .. 385-395.
  • 5ZHOU YC, MAZE. Global stability of a class of discrete age-structured SIS models with immigration[J]. Math. Biosci. Eng, 2009,6 : 409-425.
  • 6MA X,ZHOU YC,CAO H. Global stability of the endemic equilibrium of a discrete SIR epidemic model[J] ,Advances in Di- erence Equations,2013,4(1) :1-19.
  • 7曹慧,王玉萍.具有饱和治愈率的离散SIS传染病模型的动力学性态[J].陕西科技大学学报(自然科学版),2013,31(5):147-150. 被引量:6
  • 8王颖,滕志东.一类离散SIRS传染病模型的Lyapunov函数[J].新疆大学学报(自然科学版),2014,31(3):273-279. 被引量:2
  • 9王蕾,王凯,张学良,侯娟.具有标准发生率和因病死亡率的离散SIS传染病模型的全局稳定性分析[J].数学的实践与认识,2014,44(19):310-316. 被引量:3
  • 10ALLEN L,van den Driessche P. The basic reproduction number in some discrete-time epidemic models[J]. J. Difference E quations and Applications, 2008,14 1127-1147.

二级参考文献14

  • 1王晓燕,杨俊元.具有Logistic增长和年龄结构的SIS模型[J].数学的实践与认识,2007,37(15):99-103. 被引量:9
  • 2Allen L. Some discrete time SI, SIR, and SIS epidemic models[J]. Math Biosci, 1994,124 : 83-105.
  • 3Castillo-Chavez C, Yakubu AA. Discrete-time SIS models with complex dynamics[J]. Nonliear Anal, 2001, 47: 4 753-4 762.
  • 4Cao H,Zhou Y C,Song B J. Complex dynamics of discrete SEIS models with simple demography[DB/OL], http:// dx. doi. org/10. 1155/2011/653937,2011-8-25.
  • 5Zhou YC, Ma ZE, Brauer F. A discrete epidemicmodel for SARS transmission and control in China[J]. Mathematical and Computer Modelling,2004,40:1 491-1 506.
  • 6Zhou YC,Khan K,Feng Z. et al. Projection of tuberculo sis incidence with increasing immigration trends[J]. J. Theoretical Biology, 2008,254 : 215-228.
  • 7Cao H, Zhou YC. The discrete age-structured SEIT model with application to tuberculosis transmission in China[J]. Mathematical and Computer Modelling, 2012, 55: 385- 395.
  • 8Allen L, van den Driessche P. The basic reproduction number in some discrete time epidemic models[J]. Jour- nal of Difference Equations and Applications, 2008,14 : 1 127-1 147.
  • 9Cao H, Zhou YC. The basic reproduction number of dis crete SIR and SEIS models with periodic parameters[J]. Discrete and Continuous dynamical systems-series B, 2013,18(1):37- 56.
  • 10Capasso V, Serio G. A generalization of kermack mcken drick deterministic epidemic model [J ]. Math. Biosci. 1978,42(1-2) :43-61.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部