摘要
主要研究了一类考虑潜伏期和染病期都具有感染性的离散SEIR传染病模型的动力学性态.定义了基本再生数,利用数学归纳法得到了模型解的非负性和有界性.通过构造合理的Lyapunov函数证明了平衡点的全局渐近稳定性.最后通过数值模拟验证了我们的理论结果.
The dynamical behavior of discrete SEIR epidemic model with latent infection is studied.The basic reproductive number is defined,the nonnegativity and boundless of solutions are analyzed by inductive method.It is proved that the equilibrium is globally asymptotically stable by constructing reasonable Lyapunov function.Numerical simulations are done to show our theoretical results.
出处
《太原师范学院学报(自然科学版)》
2016年第1期19-22,共4页
Journal of Taiyuan Normal University:Natural Science Edition
基金
太原工业学院科技处基金(2015LQ19)