期刊文献+

基于多维度属性权重优化的FCM聚类算法的图书管理数据聚类研究 被引量:1

Research on Library Management data Clustering and FCM Clustering Algorithm of Multi Dimension Attribute Weights Based on the Optimization
下载PDF
导出
摘要 结合图书管理参数复杂,变量维数较高,多属性数据点集中不但包含数值型属性,还有类别属性和混合型属性的特点,将模糊聚类算法与属性加权优化相结合,进而推导出优化迭代公式并形成加权聚类算法对图书数据管理中的相关影响因素进行聚类分析,得到了相关具有较大影响因素的相关变量,对于企业今后一段时间内的精细化管理给出了控制方向和指标。 In this paper,combining with the library management parameters of complex,variable dimension is high,multiple attribute data point focused not only contains the numeric attributes,and the class attribute and mixed attributes and characteristics,the fuzzy clustering algorithm and weighted attribute optimization combination,and then derived the optimal iteration formula and the formation of weighted clustering algorithm factors related to books data management in the cluster analysis,has been related to having a greater impact factors are given for the relevant variables,fine management of enterprises in the coming period of time control directions and index.
作者 张卫东
出处 《农业图书情报学刊》 2016年第6期50-57,共8页 Journal of Library and Information Sciences in Agriculture
关键词 多维度 聚类 图书管理数据 FCM Multi dimension Clustering Library management data FCM
  • 相关文献

参考文献4

二级参考文献29

  • 1U M Fayyad , G Piatetsky - Shapiro , P Smyth. Knowledge discovery and data mining : towards a unifying framework [ A]. In Proc. 2nd Int 'lConf. on Knowledge Discovery and Data Mining [ C]. Menlo Park ,1996.
  • 2Richard J. Roiger, Michael W. Geatz. DATA MINING;A TUTORIAL - BASED PRIMER [ M ]. 北京:清华大学出版社,2002,78-100.
  • 3B Lent, A Swami, J Widom. Clustering association rules. In:AlexGray, Per-Ake Larson eds. Proc of the 13th Int'l Conf on Data Engineering. Birmingham, England: IEEE Computer Society, 1997. 220-231.
  • 4B Liu, W Hsu, Y Ma. Integrating classification and association rule mining. In: R Agrawal, P E Stolorz, G Piatetsky-Shapiro eds. Proc of the 4th Int'l Conf on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 80-86.
  • 5G Dong, J Li. Efficient mining of emerging patterns: Discovering trends and differences. In, S Chaudhuri, D Modigan eds. Proc of the 5th Int' 1 Conf on Knowledge Discovery and Data Mining. San Diego, CA: ACM Press, 1999. 43-52.
  • 6J Li, G Dong, K Rmxmmohtmarao. Making use of the most expressive jumping emerging patterns for classification. In: Takao Terano, Huan Liu, Arbee L P Chen eds. Proc of the 4th Pacific-Asia Conf on Knowledge Discovery mad Data Mining. Kyoto,Japan: Springer, 2000. 220-232.
  • 7Chan Man Kuok, Aria Fu, Man Hon Wong. Mining fuzzy association rules in database. SIGMOD Record, 1998, 27(1): 41-46.
  • 8R J Hathaway, J W Davenport, J C Bezdek. Relational dual of the c-means algorithms. Pattern Recognition, 1989, 22 (2) : 205-212.
  • 9R Agrawal, R Srikant. Fast algorithms for mining association rules. In: J B Bocca, M Jarke, C Zaniolo eds. Proc of the 20th Int'l Conf on Very Large Databases. Santiago, Chile: Morgan Kaufmann, 1994. 487-499.
  • 10L I Kuncheva. How good are fuzzy if-then classifiers? IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000,30(4):501-509.

共引文献25

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部