期刊文献+

无平方因子阶本原2-弧传递图 被引量:1

Finite Primitive Two-arc Transitive Graphs of Square-free Order
下载PDF
导出
摘要 通过对有限群的子群结构和图自同构群的点稳定子群分析,给出了无平方因子阶的2-弧传递图的分类和刻画,采用极大子群分析法证明了此类图同构于完全图、双截断Witt图或文中构造的四类陪集图之一。 By analyzing the subgroup structures and the vertex-stabilizer subgroup of the graph automorphism group, the 2-arc transitive graphs of square-free order are depicted and classified, and with the method of the maximal subgroup analyzing, it is proved that such a graph is isomorphic to complete graph, double truncated Witt graph, or one of the other four coset graphs constructed.
出处 《安徽工业大学学报(自然科学版)》 CAS 2016年第1期83-85,共3页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省自然科学基金项目(1408085MA04) 安徽工业大学研究生创新研究基金项目(2014130) 安徽省大学生创新创业训练项目(AH201310360231 AH201310360341)
关键词 弧传递图 本原置换群 陪集图 arc transitive graph finite primitive coset graph
  • 相关文献

参考文献10

  • 1MARUIile D. Cayley properties of vertex symmetric graphs[J]. Ars Combinatoria, 1983, 16B:297-302.
  • 2MCKAY B D, PRAEGER C E. Vertex-transitive graphs which are not Cayley graphs I[J]. Journal of Auslralian Mathematical Society, 1994, 56:53-63.
  • 3MCKAY B D, PRAEGER C E. Vertex-transitive graphs which are not Cayley graphs II[J]. Journal of Graph Theory, 1996, 22: 321-334.
  • 4CHAO C Y. On the classification of symmeu'ic graphs with a prime number of vertices[J]. Transactions of American Mathematical Society, 1971, 158:247-256.
  • 5IRANMANESH M A, PRAEGER C E. On non-Cayley vertex-transitive graphs of order a product of three primes[J]. Journal of Combinatorial Themy, Series B, 2001, 81:1-19.
  • 6LI C H, LIU Z, LU L P. Tetravalent edge-transitive Cayley graphs of square-free order[j]. Discrete Mathematics, 2012, 312: 1952-1967.
  • 7LI C H, LU Z P, WANG G X. Vertex-transitive cubic graphs of square-free order[j]. Journal of Graph Theory, 2014, 75:1 - 19.
  • 8王佳利,王改霞,郑祥.群与图的对称性[J].纯粹数学与应用数学,2015,31(4):367-372. 被引量:4
  • 9LI C H, SERESS A. The primitive permutation groups of square-free degree[J]. Bulletin of the London Mathematical Society, 2003, 35:635-644.
  • 10CONWAY J H, CURTICS R T, NORTON S P. Atlas of Finite Groups[M]. Eynsham: Oxford University Press, 1985.

二级参考文献13

  • 1Hahn G , Sabidussi G. Graph Symmetry [M]. The Netherlands: Kluwer Academic Publishers, 1996.
  • 2Chao C Y. The classification of symmetric graphs with a prime number of vertices [J]. Transactions of the American Mathematical Society, 1971,158:247-256.
  • 3Cheng Y, Oxley J. On weekly symmetric graphs of order twice a prime [J]. Journal of Combinatorial Theory Series B, 1987,42:196-211.
  • 4Liebeck M W, Saxl J. Primitive permutation groups containing an element of large prime order [J]. Journal of London Mathematical Society, 1985,2:237-249.
  • 5Marusic D, Scapellato R. Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup [J]. Journal of Graph Theory, 1992,16:375-387.
  • 6Praeger C E, Xu M Y. Vertex-primitive graphs of order a product of two distinct primes [J]. Journal of Combinatorial Theory Series B, 1993,59:245-266.
  • 7Praeger C E, Wang R J, Xu M Y. Symmetric graphs of order a product of two distinct primes [J]. Journal of Combinatorial Theory Series B, 1993,58:299-318.
  • 8Li C H, Maruvsivc D, Morris J. Classifying arc-transitive circulants of square-free order [J]. Journal of Algebraic Combinatorics, 2001,14:145-151.
  • 9Li C H, Seress A. On Vertex-transitive non-Cayley graphs of square-free order [J]. Designs, Codes and Cryptography, 2005,34:265-281.
  • 10Li C H, Liu Z, Lu Z P. Tetravalent edge-transitive Cayley graphs of square-free order [J]. Discrete Mathe- matics, 2012,312:1952-1967.

共引文献3

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部