期刊文献+

一类具有抑制剂和质载的非均匀恒化器模型的共存解 被引量:2

Coexistence Solutions of the Unstirred Chemostat Model with Inhibitor and Plasmid
下载PDF
导出
摘要 研究了一类具有抑制剂和质载的非均匀恒化器模型.首先,采用锥映射上不动点指标理论得到了物种共存的充分条件.然后,根据度理论及摄动理论,研究了模型正平衡态解的唯一性和稳定性.结果表明当抑制剂的影响充分大时,模型存在唯一的渐近稳定的共存解.最后,利用比较原理和一致持续理论研究了系统的长时行为,并采用数值模拟的方法对所得结论进行了验证和补充. An unstirred chemostat model with inhibitor and plasmid is investigated.First,sufficient conditions of coexistence are determined by the fixed point index theory in cone.Second,the uniqueness and stability of positive steady state solution are investigated by the degree theory and perturbation technique.It turns out that if the effects of the inhibitor are sufficiently large,then this model has only one asymptotically stable coexistence solution.Finally,the long-time behavior of the system is studied by the comparison principle and uniform persistence theory.Numerical simulations are applied to verify and supplement the analytic outcomes.
出处 《数学年刊(A辑)》 CSCD 北大核心 2016年第2期171-190,共20页 Chinese Annals of Mathematics
基金 教育部新世纪优秀人才支持计划(No.NCET-12-0894) 中央高校基本科研业务费专项资金(No.GK201303008) 陕西省青年科技新星(No.2015KJXX-21) 陕西省教育厅项目(No.2015JK1433)的资助
关键词 恒化器 抑制剂 不动点指标理论 摄动理论 稳定性 Chemostat Inhibitor Fixed point index theory Perturbation theory Stability
  • 相关文献

参考文献18

  • 1Hsu S B, Waltman P. A survey of mathematical models of competition with an inhibitor [J]. Math Biosci, 2004, 187(1):53-91.
  • 2Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from compe- tition in an unstirred chemostat [J]. SIAM J Appl Math, 1993, 53(4):1026-1044.
  • 3WuJH stat [J]. Global bifurcation of coexistence state for the competition model in the chemo- Nonlinear Anal, 2000, 39(7):817 835.
  • 4Zheng S N, Liu J. chemostat model [J] Coexistence solutions for a Appl Math Comput, 2003 reaction-diffusion system of unstirred 145(2-3):579 590.
  • 5Wang F Y, Hao C P, Chen L S. Bifurcation and chaos in a 'l'essiet type rood chain claemo- stat with pulsed input and washout [J]. Chaos Solutions Fractals, 2007, 32(4):1547- 1561.
  • 6Wu J H, Nie H, Wolkwicz G S K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat [J]. SIAM J Math Anal, 2007, 38(6):1860- 1885.
  • 7聂华,吴建华.具有质载和内抑制剂的非均匀恒化器模型共存解的多重性[J].中国科学:数学,2011,41(6):497-516. 被引量:2
  • 8聂华,吴建华,贾云锋.具有质体的非均匀恒化器模型的动力学[J].数学年刊(A辑),2008,29(5):697-708. 被引量:1
  • 9聂华,吴建华,谢文昊.一类具有抑制剂的非均匀恒化器模型的共存态[J].数学年刊(A辑),2009,30(6):845-856. 被引量:1
  • 10Nie H, Wu J H. A system of reaction-diffusion equations in the unstrirred chemostat with an inhibitor [J]. Internat J Bifur chaos, 2006, 16(4):989-1009.

二级参考文献70

  • 1Smith H. L. and Waltman P., The Theory of the Chemostat [M], Cambridge (UK): Cambridge University Press, 1995.
  • 2Chao L. and Levin B. R., Structured habitats and the evolution of anti-competitor toxins in bacteria [J], Proc. Nat. Acad. Sci., 1981, 75:6324 -6328.
  • 3Levin B. R., Frequency-dependent selection in bacterial populations [J], Phil. Trans. Roy. Soc. London, 1988, 319:459-472.
  • 4Hsu S. B. and Waltman P., A survey of mathematical models of competition with an inhibitor [J], Math. Biosci., 2004, 187:53-97.
  • 5Nie H. and Wu J. H., Asymptotic behavior of an unstirred chemostat model with internal inhibitor [J], J. Math. Anal. Appl., 2007, 334:889-908.
  • 6Wu J. H., Nie H. and Wolkowicz G. S. K., The effect of inhibitor on the plasmid-bearing and plasmid-free chemostat model [J], SIAM J. Math. Anal., 2007, 38:1860-1885.
  • 7Beddington J. R., Mutual interference between parasites and its effect on searching efficiency [J], J. Animal. Ecol., 1975, 44:331-340.
  • 8DeAngelis D. L., Goldstein R. A. and O'Neill R. V., A model for trophic interaction [J], Ecology, 1975, 56:661-892.
  • 9Harrision G. W., Comparing predator-prey models to Luckinbill's experiment with di- dinium and paramecium [J], Ecology, 1995, 76:357-369.
  • 10Qui Z., Yu J. and Zou Y., The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response [J], Mathematical Biosciences, 2004, 187:175-187.

共引文献1

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部