摘要
研究了一类具有抑制剂和质载的非均匀恒化器模型.首先,采用锥映射上不动点指标理论得到了物种共存的充分条件.然后,根据度理论及摄动理论,研究了模型正平衡态解的唯一性和稳定性.结果表明当抑制剂的影响充分大时,模型存在唯一的渐近稳定的共存解.最后,利用比较原理和一致持续理论研究了系统的长时行为,并采用数值模拟的方法对所得结论进行了验证和补充.
An unstirred chemostat model with inhibitor and plasmid is investigated.First,sufficient conditions of coexistence are determined by the fixed point index theory in cone.Second,the uniqueness and stability of positive steady state solution are investigated by the degree theory and perturbation technique.It turns out that if the effects of the inhibitor are sufficiently large,then this model has only one asymptotically stable coexistence solution.Finally,the long-time behavior of the system is studied by the comparison principle and uniform persistence theory.Numerical simulations are applied to verify and supplement the analytic outcomes.
出处
《数学年刊(A辑)》
CSCD
北大核心
2016年第2期171-190,共20页
Chinese Annals of Mathematics
基金
教育部新世纪优秀人才支持计划(No.NCET-12-0894)
中央高校基本科研业务费专项资金(No.GK201303008)
陕西省青年科技新星(No.2015KJXX-21)
陕西省教育厅项目(No.2015JK1433)的资助
关键词
恒化器
抑制剂
不动点指标理论
摄动理论
稳定性
Chemostat
Inhibitor
Fixed point index theory
Perturbation theory
Stability