期刊文献+

单光束飞秒激光诱导的电子态密度分布对双周期纳米光栅的影响 被引量:3

Influence of Electron Density Distribution Induced by Single Beam Femtosecond Laser on Doubly-Periodic Nanogratings
原文传递
导出
摘要 研究了不同脉冲能量下1kHz飞秒激光脉冲在石英玻璃内部诱导的损伤痕迹、纳米光栅结构及其双折射特性,发现在激光辐照区域顶端形成的微纳结构具有两种周期性:沿光传输方向的周期为ΛK;沿激光偏振方向的周期为ΛE.通过数值模拟飞秒脉冲在石英玻璃内部的传输过程,研究了入射能流密度分布及自由电子密度分布对双周期纳米光栅结构的影响.结果表明,较大的入射能流密度有利于纳米光栅的形成,且产生的电子密度会影响周期ΛK,电子密度越大,周期ΛK越大.从理论上分析了双周期纳米光栅结构的形成过程,认为等离子体非对称生长及其引起的局域场强分布影响了双周期纳米光栅结构的形成. The characteristics of nanogratings including damage trace,structure and birefringence properties,which are induced in fused silica by 1kHz femtosecond laser pulses with different pulse energy,are studied.Two different periodic nanostructures are observed at the top of laser irradiation area,the primary structure with the periodΛKin the direction of light propagation and the secondary structure with the periodΛEin the direction of laser beam polarization.The influence of incident energy flux density distribution and free electron density distribution on doubly-periodic nanogratings is investigated by numerically simulating the propagation process of femtosecond laser pulses inside the fused silica.The results show that higher incident energy flux density benefits the formation of nanogratings,and the generated electron density influences the periodΛK.The higher the electron density is,the longer the periodΛKis.The formation of doubly-periodic nanogratings is analyzed theoretically according to current experimental results.The asymmetric growth of plasma and the causing local intensity distribution affect the formation of doubly-periodic nanogratings.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第5期105-111,共7页 Acta Optica Sinica
基金 国家自然科学基金(61205128) 上海市自然科学基金(13ZR1414800)
关键词 激光光学 飞秒激光 纳米光栅 微加工 等离子体 laser optics femtosecond laser nanogratings micro-processing plasma
  • 相关文献

参考文献3

二级参考文献56

  • 1GARMIRE E M, STOLI. H. Propagation losses in metal-ilm substrate optical waveguide[J]. IEEE Journal of Quantum Electronics, 1972, 8(10): 763-766.
  • 2THYAGARAJAN K, DIGGAVI Supriya, GHATAK A K, et al. Thin-metal-clad waveguide polarizers= analysis and eomparision with experiment [J]. Optics Letters, 1990, 15 (18): 1041-1043.
  • 3NAKANO T, BABA K, MIYAGI M. Insertion loss andextinction ratio of a surface Plasmon-polariton polarizer: theoretical analysis[J]. JOSA B, 1994, 11(10) : 2030-2035.
  • 4CHEN C H, WANG L K. Design of finite-length metal-clad optical waveguide polarizer[J]. IEEE Journal of Quantum Electronics, 1998, 34(7): 1089-1097.
  • 5FUJITA J, LEVY M, SCARMOZZINO R, et al. Integrated multistack waveguide polarizer [J]. IEEE Photonics Technology Letters, 1998, 10(1): 93-95.
  • 6WATANABE O, TSUCHIMORI M, OKADA A, et al. Mode selective polymer channel waveguide defined by the photoinduced change in birefringence [J]. Applied Physics Letters, 1997, 71(6) : 750-752.
  • 7MORAND A, SANCHEZ-PEREZ C, BENECH P, et al. Integrated optical waveguide polarizer on glass with a birefringent polymer overlay[J]. IEEE Photonics Technology Letters, 1998, 10(11): 1599-1601.
  • 8ICHIKAWA J, UDA S, SHIMAMURA K, et al. Ti : LiNbO3 waveguide polarizer with a Zn-doped overlayer prepared by liquid-phase epitaxy[J]. Applied Physics Letters, 2000, 76(12): 1498-1500.
  • 9ZHAO Deng-tao, SHI Bin, JIANG Zui-min, et al. Silicon- based optical waveguide polarizer using photonic band gap[J]. Applied Physics Letters, 2002, 81(3) : 409-411.
  • 10SINHA R K, KALRA Y. Design of optical waveguide polarizer using photonic band gap[J]. Optics Express, 2006, 14(22): 10790-10794.

共引文献20

同被引文献13

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部