期刊文献+

飞秒激光诱导金属钨表面周期性自组织结构的研究 被引量:10

Investigation of Femtosecond Laser-Induced Periodic Surface Structure on Tungsten
原文传递
导出
摘要 飞秒激光诱导金属表面周期性自组织微纳米条纹结构,在调控热辐射源、摩擦、超亲水性、超疏水性和打标等方面具有广泛的应用前景.研究了800nm飞秒激光诱导金属钨表面周期性自组织结构的形成规律和形成机理.采用Sipe干涉模型和有限时域差分法,仿真了第1个飞秒激光脉冲刻蚀后随机粗糙表面引起的激光电磁场能量表面分布和第20个脉冲后低空间频率条纹结构引起的激光电磁场能量表面分布.揭示了低空间频率条纹与高空间频率条纹的形成机理,考察了表面微观形貌的演化和条纹周期随着脉冲增多而递减的现象. Femtosecond laser-induced periodic surface structure(LIPSS)has the potential applications in tunable thermal source,tribology,super-hydrophilicity,super-hydrophobicity,marking and so on.LIPSS formation and mechanism on tungsten with a 800 nm femtosecond laser are investigated.The electromagnetic energy distribution on random rough surface after the first laser pulse and the energy distribution of electromagnetic field induced by low-spatial-frequency LIPSS after 20 pulses are simulated by Sipe interference model and finite-difference timedomain(FDTD)method.The formation mechanism of low-spatial-frequency and high-spatial-frequency LIPSS(HSFL)is disclosed.The evolution of surface morphology and the phenomena of spatial period decreasing with the increase of laser pulse number are also investigated.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第5期312-318,共7页 Acta Optica Sinica
基金 国家自然科学基金(61223007 61378019)
关键词 超快光学 飞秒激光 微加工 有限时域差分法 ultrafast optics femtosecond laser micromachining tungsten finite-difference time-domain method
  • 相关文献

参考文献4

二级参考文献137

  • 1国家自然科学基金委员会. 重大研究项目“纳米制造的基础研究”2009年度项目指南[OL]. 2011-05-10, http:∥www.nsfc.gov.cn/nsfc/cen/yjjhnew/20090121_03.htm.
  • 2国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告: 2011-2020[M]. 北京:科学出版社,2010.
  • 3D. Buerle. Laser Processing and Chemistry[M]. 3rd ed., Berlin: Springer, 2000.
  • 4A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos et al.. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy[J]. Appl. Phys. Lett., 2003, 82(8): 1146-1148.
  • 5T. Tanaka, H. B. Sun, S. Kawata. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl. Phys. Lett., 2002, 80(2): 312-314.
  • 6J. D. Boor, D. K. Kim, V. Schmidt. Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd′s interferometer[J]. Opt. Lett., 2010, 35(20): 3450-3452.
  • 7M. C. Marconi, P. C. Wachulak. Extreme ultraviolet lithography with table top lasers[J]. Progress Quantum Electron., 2010, 34(4): 173-190.
  • 8C. S. Lim, M. H. Hong, Y. Lin et al.. Microlens array fabrication by laser interference lithography for superresolution nano patterning[J]. Appl. Phys. Lett., 2006, 89(19): 191125.
  • 9S. C. Lo, H. N. Wang. Near-field photolithography by a fibre probe[C]. Maui: Proceedings of 1st IEEE Conference on Nanotechnology, 2001. 36-39.
  • 10E. McLeod, C. B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres[J]. Nature Nanotechnology, 2008, 3(7): 413-417.

共引文献48

同被引文献84

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部