期刊文献+

带整体单极子黑洞背景下纠缠熵的相变 被引量:1

Holographic thermalization in the background with conformal anomaly corrected black holes
原文传递
导出
摘要 在带整体单极子黑洞背景下,研究了热力学熵和纠缠熵的相变.结果表明,在熵-温度平面,热力学熵与纠缠熵具有完全类似的相结构.当黑洞电荷很小时,相变是一阶相变;当电荷增大到临界电荷时,相变是二阶相变.对于热力学熵和纠缠熵的一阶相变,发现麦克斯韦的等面积法则始终成立,对于热力学熵和纠缠熵的二阶相变,得到了相变点附近热容的临界指数,这一值和平均场论得到的值近似相等. In the background for a black hole with a global monopole, we investigate the phase transition of thermodynamic entropy and entanglement entropy. The result shows that in the entropy temperature plane, the thermodynanuc entropy and entan- glement entropy have the same phase structure completely. For the small charge, the phase transition is first order, and as the charge grows to the critical charge, the phase transition is second order. For the first order phase transition of thermody- namic entropy and entanglement entropy, we find Maxwell's equal area law holds always, and for the second order phase transition of thermodynamic entropy and entanglement entropy, we obtain the critical exponent of heat capacity near the critical point, which is consistent with that obtained from the mean field theory.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第6期24-32,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:11405016,51278512) 国家杰出青年基金(编号:51278512) 重庆市教委(编号:KJ1500530)资助项目
关键词 纠缠熵 相变 黑洞 整体单极 entanglement entropy, phase transition, black hole, global monopole
  • 相关文献

参考文献3

二级参考文献52

  • 1Han Y W, Hong Y and Yang S Z 2007 Acta Phys. Sin. 56 10.
  • 2Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303.
  • 3Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. Lett. 96 151302.
  • 4Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. D 74 044017.
  • 5Murata K and Soda J 2006 Phys. Rev. D 74 044018.
  • 6Iso S, Morita H and Umetsu H 2007 JHEP 0704 068.
  • 7Vagenas E C and Das S 2006 JHEP 0610 025.
  • 8Setare M R 2007 Euro. Phys. J. C 49 865.
  • 9Xu Z B and Chen B 2007 Phys. Rev. D 75 024041.
  • 10Xiao K, Liu W B and Zhang H B 2007 Phys. Lett. B 647 482.

共引文献6

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部