期刊文献+

不同强度平面激波冲击下正方形air/SF6界面演化的数值研究 被引量:2

Numerical investigation on air/SF_6 square block accelerated by planar shock with different strengths
原文传递
导出
摘要 本文采用VAS2D数值研究了两种强度平面激波(Ma=1.18,2.50)与air/SF6/air正方形界面作用后的RM不稳定性发展,重点考察流场可压缩性对界面不稳定性发展的影响.波系结构分析表明,激波强度不同会导致复杂的激波-激波干扰发生的位置不同,从而对界面形态,尤其是射流结构的产生有重要影响.低马赫数下复杂激波-激波干扰发生在界面内部,诱导向外射流结构的产生;而高马赫数下复杂激波-激波干扰发生在界面外部,诱导向内射流结构的产生.同时,高马赫数下复杂的激波反射折射对界面发展有着重要的影响,诱导多个射流结构的产生.随着入射激波强度增大,可压缩效应明显增强,界面上产生涡量大小和分布有所不同.强激波的冲击使得界面上累积更多的涡量,涡结构增长迅速,同时也观测到滑移面上有明显的涡量产生,表明滑移面两侧流体的运动速度有较大差异.强激波的压缩使得界面获得较高的运动速度,界面宽度和高度同样具有较大的变化率.此外,强激波的冲击会导致两种气体之间混合速率增大,极大地增强了气体之间的混合.定性和定量结果表明,可压缩性对流场的波系结构以及界面形态都有着重要的影响. Evolution of an SF6 square block accelerated by a planar shock with different Mach numbers (Ma=l. 18, 2.50) is numer- ically investigated using VAS2D algorithm, focusing on the compressible effect on the flow instability development. The wave patterns show that different shock strengths will result in the difference in location of shock-shock interaction oc- curring, and consequently have a prominent influence on interface morphology, especially on the jet structure. The results indicate that for a low Mach number, complicated shock-shock interaction occurs inside the volume, causing an outward jet formation. For a high Mach number, on the contrary, complicated shock-shock interaction occurs outside the volume, inducing an inward jet formation. Meanwhile, the shock reflection and refraction at interface for the high Mach number are so complicated that several additional jets generate and the interface is disturbed heavily. As shock Mach number in- creases, the compressible effect increases and vorticity amplitude and distribution also behave differently. More vorticity will deposit at the interface after impacted by a stronger shock wave, resulting in the vortex pair growing faster. Besides, vorticity is also clearly observed at the slip surface for the stronger shock wave, indicating that the obvious difference in velocity amplitude occurs at both sides of slip surface. Compressed by the stronger shock wave, the interface acquires a larger velocity, and the interface width and height also change greatly. Furthermore, the impact of the stronger shock wave greatly increases the mixing between two gases. Qualitative and quantitative results in this work demonstrate that the compressible effect has a significant influence on wave pattern and interface evolution.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第6期60-69,共10页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:11302219) 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(编号:U1530103)资助项目
关键词 RICHTMYER-MESHKOV不稳定性 方形界面 混合面积 数值模拟 Richtmyer-Meshkov instability, square, mixing area, numerical simulation
  • 相关文献

参考文献28

  • 1Richtmyer R D. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math, 1960, 13:297-319.
  • 2Meshkov E E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 1969, 4:101-104.
  • 3罗喜胜,翟志刚,司廷,杨基明.激波诱导下的气体界面不稳定性实验研究[J].力学进展,2014,44(1):260-290. 被引量:14
  • 4Meyer K A, Blewett P J. Numerical investigation of the stability of a shock accelerated interface between two fluids. Phys Fluids, 1972, 15: 753-759.
  • 5Latini M, Schilling O, Don W S. High-resolution simulations and modeling of reshocked single-mode RMI comparison to experimental data and to amplitude growth modal predictions. Phys Fluids, 2007, 19:024104.
  • 6Baltrusaitis R M, Gittings M L, Weaver R P, et al. Simulation of shock-generated instabilities. Phys Fluids, 1996, 8:2471-2483.
  • 7柏劲松,王涛,邹立勇,黄文斌,李平.激波管实验和果冻实验界面不稳定性数值计算[J].应用力学学报,2009,26(3):418-425. 被引量:5
  • 8严长林,孙德军,尹协远,童秉纲.RICHTMYER-MESHKOV不稳定性的数值模拟[J].计算物理,2001,18(1):27-32. 被引量:8
  • 9Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech, 1987, 181:41-76.
  • 10Zabusky N J, Zeng S M. Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical fast/slow bubble interactions. J Fluid Mech, 1998, 362:327-346.

二级参考文献38

  • 1柏劲松,李平,张展翼,华劲松,谭华.Application of the high-resolution Godunov method to the multi-fluid flow calculations[J].Chinese Physics B,2004,13(12):1992-1998. 被引量:9
  • 2Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pure Appl Math, 1960, 13 :297-319.
  • 3Meshkov. Instability of the interface of two gases accelerated by a shock wave [J]. Transl of Izv Acad Sci USSR Fluid Dyn, 1969, 4 101-104.
  • 4Benjamin B. Besnard D, Haas J. Shock and reshock of an unstable interface[R]. LA2UR 9221185, 1993.
  • 5Haas J F, Sturtevan B.Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. J Fluid Mech, 1987, 181:41-76.
  • 6Anderson M H , Puranik B P, Oakley J G, et al.Shock tube investigation of hydrodynamic issues related to inertial confinement fusion [J]. Shock Waves, 2000, 13:377-387.
  • 7Hosseini S H, Takayama K. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves [J] Phys Fluids, 2005, 17:084101.
  • 8Andronov, Meshkov. Computational and experimental studies of hydrodynamic instabilities and turbulent mixing [R] DE9500683/HDM.
  • 9Baltrusaitis R M. Simulation of shock generated instabilities [J]. Phys Fluids, 1996, 8:2471-2479.
  • 10Goodwin B , Weir S. Rayleigh-Taylor instability experiments in a cylindrically convergent geometry [R]. DE96000373/HDM.

共引文献31

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部