期刊文献+

有限体积元法定价欧式期权 被引量:1

Finite Volume Element Method for Pricing European Option
下载PDF
导出
摘要 基于线性有限元空间,构造欧式期权定价模型的2种稳定的全离散有限体积元格式.数值实验结果表明,有限体积元法的定价是高效的,而Crank-Nicolson格式的数值效果要优于隐式欧拉格式. In this paper,we drive two kinds of full discrete finite volume element schemes for pricing European option based on a linear finite element space. Numerical experiments confirm the perform of the finite volume element method,and further show that the Crank-Nicolson scheme is more efficient than the backward Euler scheme.
作者 甘小艇 易华
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期327-331,共5页 Journal of Sichuan Normal University(Natural Science)
基金 云南省青年项目(2013FD045) 云南省教育厅科研项目(2015Y443)
关键词 有限体积元法 欧式期权 CRANK-NICOLSON 隐式欧拉 finite volume element method european option Crank-Nicolson backward Euler
  • 相关文献

参考文献16

  • 1LI R H, CHEN Z Y,WU W. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite VolumeMethods[ M]. New York:Marcel Dekker,2000.
  • 2费斯泰赫.计算流体动力学导论:有限体积法[M].2版.北京:世界图书出版公司,2010.
  • 3甘小艇,阳莺,张坤.四边形网上双曲型方程的有限体积元法[J].四川师范大学学报(自然科学版),2012,35(5):618-624. 被引量:3
  • 4甘小艇,张坤.抛物和双曲方程的全离散间断有限体积元法[J].西北师范大学学报(自然科学版),2012,48(1):15-21. 被引量:3
  • 5HUANG C S, HUANG C H,WANG S. A fitted finite volume method for the valuation of options on assets with stochastic volatili-ties[J]. Comput,2006,77(3) :297 -320.
  • 6WANG S. A novel fitted finite volume method for the Black - Scholes equation governing option pricing[ J]. Numer Analysis,2004,24(4):699 - 720.
  • 7ANGERMANN L, WANG S. Convergence of a fitted finite volume method for the penalized Black - Scholes equation governingEuropean and American option pricing[ J]. Numer Math,2007,106(1) :1 -40.
  • 8WANG S, YANG X Q, TEO K L. Power enaplty method for a linear complementarity problem arising from American option valua-tion[ J]. J Optim Theor Appl,2006,129(2) :227 -254.
  • 9ZHANG K, WANG S. Pricing options under jump diffusion processes with fitted finite volume method[ J]. Appl Math Comput,2008,201(1):398 -413.
  • 10ZVAN R, FORSYTH P A, VETZAL K R. Penalty methods for American options with stochastic volatility[ J]. J Comput ApplMath,1998,91(2) :199 -218.

二级参考文献25

  • 1李永海,程志伟,孙凤芝.抛物方程的基于BB型对偶剖分的有限体积元法[J].计算数学,2005,27(4):415-428. 被引量:3
  • 2贾闽惠,刘小华.四边形网格上抛物型方程广义差分法的L^2模误差估计[J].四川大学学报(自然科学版),2006,43(2):285-292. 被引量:2
  • 3LI Rong-hua, CHEN Zhong-ying, WU Wei. Generalized Difference Methods for Differential Equations (Numerical Analysis of Finite Volume Methods)[M]. New York: Marcel Dekker, 2000.
  • 4BAUMANN C E, ODEN J T. A discontinuous Hp finite element method for convection-diffusion prob- lems[J]. Computer Methods in AppLied Mechanics and Engineering, 1999, 175: 311-341.
  • 5COCKBUM B, SHU C W. The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems[J]. SIAM J Numer Anal, 1998, 45(4).- 2440-2463.
  • 6AMOLD D N, BREZZI F, COCKBUM B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J Numer Anal, 2002, 39(4): 1749-1779.
  • 7YE Xiu. A new discontinuous finite volume method for elliptic problems [J]. SIAM J Numer Anal, 2004, 42(3): 1062-1072.
  • 8YE Xiu. A discontinuous finite volume method for the Stokes problems [J]. SIAM J Numer Anal, 2006, 44(3): 183-198.
  • 9CHOU So-hsiang, YE Xiu. Unified analysis of finite volume methods for second order elliptic problems [J]. SlAM J Numer Anal, 2007, 45(4): 1639- 1653.
  • 10BI Chun-jia, GENG Jia-qiang. Discontinuous finite volume element method for parabolic problems[J]. Numer Methods Partial Differential Equations, 2009, 1: 1-17.

共引文献19

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部