期刊文献+

广义松弛拟单调映射以及广义松弛拟凸函数

Generalized Relaxed Quasimonotone Mappings and Generalized Relaxed Quasiconvex Functions
下载PDF
导出
摘要 介绍集值映射在赋范空间中的一种新的单调性,称之为广义松弛拟单调.运用KKM理论,证明变分不等式在新引入的单调映射下解的存在性.此外,还证明广义松弛μ拟凸函数的次微分是广义松弛μ拟单调的. In this paper,we introduce a broader class of multivalued generalized relaxed quasimonotone mappings in normed spaces. Using the KKM technique,the existence of solutions of variational inequalities for such operators is established. Furthermore,it is proved that the subdifferential of generalized relaxed μ quasiconvex functionis generalized relaxed μ quasimonotone.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期337-343,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11271274)
关键词 变分不等式 广义松弛拟单调算子 广义松弛拟凸函数 次微分 variational inequalities generalized relaxed quasimonotone operators generalized relaxed quasiconvex functions subdifferentials
  • 相关文献

参考文献20

  • 1COTTLE R W, YAO J C. Pseudomonotone complementarity problems in Hilbert spaces[ J]. J Optim Theory Appl,1992,78:281 -295.
  • 2YAO J C. Multivalued variational inequalities with K - Pseudomonotone operators[ J]. J Optim Theory Appl, 1994,83;391 -403.
  • 3CROUZEIX J P. Pseudomonotone variational inequality problems:existence of solutions[ J]. Math Program, 1997,78 :305 -314.
  • 4IJADJISAWAS N,SCHAIBLE S. Quasimonotone variational inequalities in Banach spaces[J]. J Optim Theory Appl, 1996,90:95 - 111.
  • 5AUSSEL D, HADJISAWAS N. On quasimonotone variational inequalities[ J]. J Optim Theory Appl,2004,121:445 -450.
  • 6DANIILIDIS A, HADJISAWAS N. On the subdifferentials of pseudoconvex and quasiconvex functions and cyclic monotonicity[J].J Math Anal Appl,1999,237:30 - 42.
  • 7FAROUQ N L. Convergent algorithm based on progressive regularization for solving pseudomonotone variational inequalities[ J].J Optim Theory Appl,2004,120;455 -485.
  • 8KONNOV I Y. Partial proximal point method for nonmonotone equilibrium problemsf J]. Optim Methods Soft,2006,21 :373 -384.
  • 9BAI M R. On generalized monotonicity of variational inequalities[ J]. Comput Math Appl,2007,53:910-917.
  • 10何诣然.具有集值映射变分不等式的理论分析[J].四川师范大学学报(自然科学版),2010,33(6):840-848. 被引量:9

二级参考文献44

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部