期刊文献+

基于Mg_xZn_(1-x)O薄膜固体装配型体声波谐振器 被引量:1

Solidly mounted film bulk acoustic resonator based on Mg_xZn_(1-x)O thin film
下载PDF
导出
摘要 本文研制了一种基于磁控溅射掺镁氧化锌(Mg_xZn_(1-x)O)压电薄膜的S波段固体装配型体声波谐振器(SMR-FBAR)。相比传统的氧化锌(ZnO)薄膜,Mg_xZn_(1-x)O具有高纵波声速,高电阻率优点,而且Mg原子以替位或填隙的方式进入晶格,没有改变ZnO的铅锌矿结构。通过优化磁控溅射参数的方法,获得了c轴方向生长良好的Mg_xZn_(1-x)O薄膜,并成功制得了串联谐振频率以及并联谐振频率分别在2.416 GHz和2.456 GHz的谐振器,测得其有效机电耦合系数为4.081%,回波损耗(S11)为-23.89 d B。这种SMR机械强度高、可靠性高、尺寸小,具有可立体集成到CMOS芯片表面的优势。 With a high mechanical strength and a small size, solidly mounted film bulk acoustic resonator (FBAR) is more advantageous for the next generation S band wireless communication in integrated circuit technology. An S-band FBAR consisting of a novel piezoelectric material MgxZn1-xO is presented in this paper. Compared to traditional ZnO, MgxZn1-xO has a higher acoustic velocity and resistance, and the results show that substituting Mg atoms in an interstitial way would not change wurtzite structure of ZnO. By optimizing various growth conditions, a good c-axis oriented MgxZn1-xO film utilizing magnetron sputtering system was obtained, and then FBARs with a series and parallel resonant frequency of 2.416 GHz and 2.456 GHz respectively had been fabricated. The measured effective electromechanical coupling coefficient and return loss are 4.081% and -23.89 dB respectively.
出处 《应用声学》 CSCD 北大核心 2016年第3期212-218,共7页 Journal of Applied Acoustics
基金 国家科技项目(2011AA050504)
关键词 掺镁氧化锌薄膜 固体装配型 薄膜体声波谐振器 S波段 集成电路 MgxZn1-xO, Solidly mounted resonator, Film bulk acoustic resonator, S band, Integrated circuit
  • 相关文献

参考文献4

二级参考文献15

  • 1王德苗,金浩,董树荣.薄膜声体波谐振器(FBAR)的研究进展[J].电子元件与材料,2005,24(9):65-68. 被引量:9
  • 2李卫华,许琦,尤明山,徐杰,常成,刘伟,刘丽,李保云,刘广田.小麦RIL群体中GMP含量的动态累积和净遗传增量的变化规律[J].作物学报,2006,32(5):779-784. 被引量:14
  • 3Koch M H, Timbrell P Y and Lamb R N 1995 Semicond.Sci. Technol. 10 1523
  • 4Vanheusden K, Seager C H, Wareen W L, Tallant D R, Caruso J, Hampden-Smith M J and Kodas T T 1997 J.Lumin. 75 11
  • 5Yang Z K, Yu P, Wong G L, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1997 Solid State Commun. 103 459
  • 6Wu H Z, Xu X L, Qiu D J, He K M and Shou X 2000 Chin. Phys. Lett. 17 694
  • 7Scheer R, Walter T, Schock H W, Fearheiley M L and Lewerenz H J 1993 Appl. Phys. Lett. 63 3294
  • 8Bagnall D M, Chen Y E, Zhu Z and Yao T 1997 Appl. Phys. Lett. 70 2230
  • 9Ohtomo A, Kawasaki M, Koida T, Masubuchi K and Koinuma H et al 1998 Appl. Phys. Lett. 72 2466
  • 10Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T and Shen H 2002 Appl. Phys. Lett. 80 1529

共引文献21

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部