正弦函数的Euler无穷乘积的证明
摘要
用r函数和初等概率论证明了正弦函数的乘积公式.还提出了正弦公式的一些推论.
出处
《数学译林》
2016年第1期95-96,76,共3页
MATHEMATICS
-
1拉穷.常见弱大数定律的几种不同证明方法[J].科学中国人,2014(5X):53-53.
-
2宗序平,赵俊,陶伟.概率分布的若干特征性质[J].大学数学,2008,24(1):148-150. 被引量:1
-
3石焕南.代数不等式概率证法举例[J].大学数学,1996,17(3):146-149. 被引量:1
-
4王文武.概率中一点浓度想法[J].商丘职业技术学院学报,2010,9(2):26-27.
-
5周广发.初等概率论中随机变量的数学期望概念的分析[J].高等函授学报(自然科学版),2013,26(1):42-44.
-
6徐祖润.一类概率问题的非初等解法[J].江苏教育学院学报(自然科学版),2006,22(2):43-45.
-
7朱玉明.初等概率论中的收敛性注记[J].荆州师范学院学报,2001,24(5):102-104.
-
8孙荣恒.几个组合公式的概率证明[J].大学科普,2011,5(3):29-29.
-
9彭世金.巧构函数解一类三角问题[J].数学通讯(教师阅读),1999,13(7):21-22.
-
10文敏.例谈解三角形[J].数学之友,2015,29(16):68-70.