摘要
In order to increase the usefulness of pulsed current source in engineering practice, research and study was carried out on how to increase the pulse current amplitude, reduce the rise /fall time of output pulse and MOSFET switching losses, etc. Through the analysis of the pulsed current source works theory and the mathematical derivation of the circuit model, the deduction and calculation of the pulse edge compression control methods, and improve the overall circuit structure and optimize the manufacturing process according to the theory. The following indicators was realized: the output pulse current amplitude can be up to 100 A, the shortest pulse rise / fall time was 18.8 ns and 16.1 ns respectively when the maximum amplitude output, the pulse width could be narrowest to 40 ns, repetition frequency could achieve 10 Hz to 10 k Hz, MOSFET switching losses decreased by 30.9 %. This pulsed current source can be used, not only as the power supply for the ordinary high speed narrow pulse width laser diode, but also as an ideal drive power for the high energy, narrow width pulse laser diode.
In order to increase the usefulness of pulsed current source in engineering practice, research and study was carried out on how to increase the pulse current amplitude, reduce the rise /fall time of output pulse and MOSFET switching losses, etc. Through the analysis of the pulsed current source works theory and the mathematical derivation of the circuit model, the deduction and calculation of the pulse edge compression control methods, and improve the overall circuit structure and optimize the manufacturing process according to the theory. The following indicators was realized: the output pulse current amplitude can be up to 100 A, the shortest pulse rise / fall time was 18.8 ns and 16.1 ns respectively when the maximum amplitude output, the pulse width could be narrowest to 40 ns, repetition frequency could achieve 10 Hz to 10 k Hz, MOSFET switching losses decreased by 30.9 %. This pulsed current source can be used, not only as the power supply for the ordinary high speed narrow pulse width laser diode, but also as an ideal drive power for the high energy, narrow width pulse laser diode.
基金
supported by the Changchun Science and Technology Project (13KG28)
the Jilin Province Science and Technology Development Plan (20120320)