期刊文献+

基于QR分解的正则化邻域保持嵌入算法 被引量:1

Regularized neighborhood preserving embedding algorithm based on QR decomposition
下载PDF
导出
摘要 针对训练样本不足时,对数据的低维子空间估计可能会产生严重偏差的问题,提出了一种基于QR分解的正则化邻域保持嵌入算法。首先,该算法定义一个局部拉普拉斯矩阵保留原始数据的局部结构;其次,将类内散度矩阵的特征谱空间划分成三个子空间,通过倒数谱模型定义的权值函数获得新的特征向量空间,进而对高维数据进行预处理;最后,定义一个邻域保持邻接矩阵,利用QR分解获得的投影矩阵和最近邻分类器进行人脸分类。与正则化广义局部保持投影(RGDLPP)算法相比,所提算法在ORL、Yale、FERET和PIE库上识别率分别提高了2个百分点、1.5个百分点、1.5个百分点和2个百分点。实验结果表明,所提算法易于实现,在小样本(SSS)下有较高的识别率。 The estimation of the low-dimensional subspace data may have serious deviation under lacking of the training samples. In order to solve the problem,a novel regularized neighborhood preserving embedding algorithm based on QR decomposition was proposed. Firstly,a local Laplace matrix was defined to preserve local structure of the original data.Secondly,the eigen spectrum space of within-class scatter matrix was divided into three subspaces,the new eigenvector space was obtained by inverse spectrum model defined weight function and then the preprocess of the high-dimensional data was achieved. Finally, a neighborhood preserving adjacency matrix was defined, the projection matrix obtained by QR decomposition and the nearest neighbor classifier were selected for face recognition. Compared with the Regularized Generalized Discriminant Locality Preserving Projection( RGDLPP) algorithm,the recognition accuracy rate of the proposed method was respectively increased by 2 percentage points,1. 5 percentage points,1. 5 percentage points and 2 percentage points on ORL,Yale,FERET and PIE database. The experimental results show that the proposed algorithm is easy to implement and has high recognition rate relatively under Small Sample Size( SSS).
出处 《计算机应用》 CSCD 北大核心 2016年第6期1624-1629,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61402395)~~
关键词 图嵌入 正则化 局部拉普拉斯矩阵 邻域保持嵌入 QR分解 graph embedding regularization local Laplace matrix neighborhood preserving embedding QR decomposition
  • 相关文献

参考文献23

  • 1YAN S C, XU D, ZHANG B Y, et al. Graph embedding and exten- sions: a general framework for dimensionality reduction [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 2FUKUNNAGA K. Introduction to Statistical Pattern Recognition [ M]. 2nd ed. San Diego: Academic Press, 1990:210-218.
  • 3REUNANEN J. Overfitting in making comparisons between variable selection methods [ J]. Journal of Machine Learning Research, 2003, 3(6) : 1371 - 1382.
  • 4TURK M, PENTALND A. Eigenfaces for recognition [ J]. Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 5BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1997, 19(7): 711-720.
  • 6ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323 -2326.
  • 7TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geo- metric framework for nonlinear dimensionality reduction [ J]. Sci- ence, 2000, 290(5500): 2319-2323.
  • 8BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality re- duction and data representation [ J]. Neural Computation, 2003, 15 (6): 1373 -1396.
  • 9HE X F, YAN S C, HU Y X, et al. Face recognition using Lapla- cianfaces [ J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 10HE X, CAI D, YAN S, et al. Neighborhood preserving embedding [ C]/! Proceedings of the 10th IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005:1208 - 1213.

二级参考文献66

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4杜干,朱雯君.基于局部奇异值分解和模糊决策的人脸识别方法[J].中国图象图形学报,2006,11(10):1456-1459. 被引量:20
  • 5He X and Niyogi P.Locality preserving projections[C].Proc.Conf.Advances in Neural Information Processing Systems,Vancouver,Canada,2003:585-591.
  • 6Kokiopoulou E and Saad Y.Orthogonal neighborhood preserving projections:A projection-based dimensionality reduction technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
  • 7Tao Q,Wu G W,and Wang J.The theoretical analysis of FDA and applications[J].Pattern Recognition,2006,39(6):1199-1204.
  • 8Liu J,Chen S C,and Tan X Y.A study on three linear discriminant analysis based methods in small sample size problem.Pattern Recognition,2008,41(1):102-116.
  • 9Zhuang X S and Dai D Q.Improved discriminate analysis for high-dimensional data and its application to face recognition[J].Pattern Recognition,2007,40(5):1570-1578.
  • 10Cai D,He X,and Han J,et al..Orthogonal laplacianfaces for face recognition[J].IEEE Transactions on Image Processing,2006,15(11):3608-3614.

共引文献58

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部