期刊文献+

基于平移域估计的点云全局配准算法

Global point cloud registration algorithm based on translation domain estimating
下载PDF
导出
摘要 针对迭代最近点(ICP)算法需要两幅点云具有良好的初始位置,否则易陷入局部最优的问题,提出了一种基于平移域估计的点云全局配准算法.首先分别计算数据点云和模型点云的去模糊主方向点云,利用两者平行于坐标轴的包围盒估计平移域范围;其次利用改进的全局ICP算法在估计出的平移域和[-π,π]3的旋转域中进行全局搜索配准.该算法可以根据待配准点云自适应地估计平移域的大小,进行全局自动配准,配准过程中不需要计算点云的特征信息,所需设置的参数少,对点云的初始位置没有要求.实验结果表明,所提算法能够获取全局优化的精确的配准结果,同时提高了全局配准的效率. The Iterative Closest Point( ICP) algorithm requires two point clouds to have a good initialization to start,otherwise the algorithm may easily get trapped into local optimum. In order to solve the problem, a novel translation domain estimating based global point cloud registration algorithm was proposed. The translation domain was estimated according to axis-aligned bounding box of calculating the defuzzification principal point clouds of data and model point clouds. With the estimated translation domain and [- π,π]^3rotation domain, an improved globally optimal ICP was used to register for global searching. The proposed algorithm could estimate translation domain adaptively and register globally according to the point clouds for registration. The process of registration did not need to calculate the feature information of point clouds and was efficient for any initialization with less setting parameters. The experimental results show that the proposed algorithm can get accurate registration results of global optimization automatically, and also improve the efficiency of global registration.
出处 《计算机应用》 CSCD 北大核心 2016年第6期1664-1667,共4页 journal of Computer Applications
关键词 点云配准 主方向点云 平移域估计 迭代最近点算法 全局优化 point cloud registration principal point cloud translation domain estimating Iterative Closest Point(ICP) algorithm global optimization
  • 相关文献

参考文献15

  • 1BESL P J, MCKAY H D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1992, 14(2): 239-256.
  • 2CASTELLANI U, BARTOLI A. 3D shape registration [ M]// 3D Imaging Analysis and Applications. London: Springer, 2012:221 - 264.
  • 3RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration [ C] // Proceedings of the 2009 IEEE In- ternational Conference on Robotics & Automation. Washington, DC: IEEE Computer Society, 2009:3212 - 3217.
  • 4DAI J, YANG J. A novel two-stage algorithm for accurate registra- tion of 3-D point clouds [ C]//Proceedings of the 2011 International Conference on Multimedia Technology (ICMT). Piscataway, NJ: IEEE, 2011:6187-6191.
  • 5JIANG J, CHENG J, CHEN X. Registration for 3-D point cloud u- sing angular-invariant feature [J]. Neurocomputing, 2009, 72(16/ 17/18) : 3839 -3844.
  • 6CASTELLANI U, CRISTANI M, FANTONI S, et al. Sparse points matching by combining 3D mesh saliency with statistical descriptors [J]. Computer Graphics Forum, 2008, 27(2): 643-652.
  • 7LI W, SONG P. A modified ICP algorithm based on dynamic adjust- ment factor for registration of point cloud and CAD model [ J]. Pat-tern Recognition Letters, 2015, 65:88-94.
  • 8YANG J, LI H, JIA Y. Go-ICP: Solving 3D registration efficiently and globally optimally [ C] // Proceedings of the 2013 IEEE Interna- tional Conference on Computer Vision (ICCV). Washington, DC: IEEE Computer Society, 2013:1457 - 1464.YANG J, LI H, JIA Y. Go-ICP: Solving 3D registration efficiently and globally optimally [ C] // Proceedings of the 2013 IEEE Interna- tional Conference on Computer Vision (ICCV). Washington, DC: IEEE Computer Society, 2013:1457 - 1464.
  • 9戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:196
  • 10路银北,张蕾,普杰信,杜鹏.基于曲率的点云数据配准算法[J].计算机应用,2007,27(11):2766-2769. 被引量:15

二级参考文献61

共引文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部