期刊文献+

一种平衡全局与局部搜索能力的粒子群优化算法 被引量:3

A New Particle Swarm Optimization Algorithm with Balancing Local and Global Search Ability
下载PDF
导出
摘要 针对标准粒子群优化算法存在易陷入局部最优解、收敛速度慢等缺点,从两个方面对算法进行改进.一方面,改变学习因子和惯性权重,使学习因子和惯性权重随着粒子的适应度动态自适应变化,以平衡局部和全局搜索能力;另一方面,增加粒子的学习对象,从社会心理学出发,提出向群体中所有比自身优秀的较优个体学习,以增强社会学习能力.与标准粒子群算法进行比较,实验证明新算法具有更高的收敛效率、更快的收敛速度. Because of two disadvantages which are the premature convergence and slow searching of particles in the standard Particle Swarm Optimization(PSO),two aspects of improving algorithm are proposed.On the one hand,it changes the parameter's value of learning factor and Inertia weight by particle's fitness to balance particle's local and global search ability.On the other hand,it adds learned objects including all of particles finer than itself to improve social learning ability.Contrasted to standard PSO,the experimental result of some typical testing functions proves that the new algorithm has a higher convergence efficiency and faster search speed.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第6期134-138,共5页 Microelectronics & Computer
关键词 粒子群优化算法 粒子适应度 局部搜索能力 全局搜索能力 Particle Swarm Optimization algorithm particle fitness local search ability global search ability
  • 相关文献

参考文献5

二级参考文献28

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2Liu Y H, Yang Z, Wang X P, et al. Location, localization, and Iocalizability[J]. J of Computer Science and Technology, 2010, 25(2): 274-297.
  • 3Amitangshu Pal. Localization algorithms in wireless sensor networks: Current approaches and future challenges[J]. J of Network Protocols and Algorithms, 2010, 2(1): 45-74.
  • 4Li F F, Luo F, Wang J X, et al. An effective self-adapting localization algorithm in wireless sensor networks[J]. J of Applied Mechanics and Materials, 2011, 58-60: 1013- 1017.
  • 5Jian L R, Zheng Y, Liu Y H. Beyond triangle inequality: Sifting noisy and outlier distance measurements for localization[c]. Proc of IEEE INFOCOM 2010. San Diego: IEEE Press, 2010: 1-9.
  • 6Kung H T, Lin C K, Lin T H, et al. Localization with snap-inducing shaped residuals: Coping with errors in measurement[C]. Proc of MobiCom 2009. Beijing: ACM Press, 2009: 333-344.
  • 7Li Z, Trappe W, Zhang Y, et al. Robust statistical methods for securing wireless localization in sensor networks[C]. Proc of IPSN 2005. Los Angeles: IEEE Press, 2005: 91-98.
  • 8Zhang Q X, Di Q L, Xu G Y, et al, A RSSI based localization algorithm for multiple mobile robots[C]. Proc of CMCE' 10. Changchun: IEEE Press, 2010: 190-193.
  • 9Maroti M, Kusy B, Balogh G, et al, Radio interferometric geolocation[C]. Proc of SenSys'05. San Diego: ACM Press, 2005: 1-12.
  • 10Kusy B, Ledcczi A, Maroti M, et al. Node-density independent localization[C]. Proc of IPSN'06. Nashville: ACM Press, 2006: 441-448.

共引文献48

同被引文献22

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部