期刊文献+

BMSCs条件培养基改善地塞米松对成骨细胞成骨功能抑制效应的研究

CONDITIONED MEDIUM OF BONE MARROW MESENCHYMAL STEM CELLS ALLEVIATE INHIBITING EFFECT OF DEXAMETHASONE ON OSTEOGENETIC CAPABILITY OF OSTEOBLAST
原文传递
导出
摘要 目的探讨BMSCs的旁分泌作用对地塞米松所致成骨细胞成骨功能抑制作用的影响。方法首先通过培养小鼠BMSCs 24 h制备无血清条件培养基备用。将小鼠MC3T3-E1细胞株复苏并传至第3代用于实验,分为4组:A组为对照组;B组于细胞中添加1μmol/L地塞米松;C组于细胞中按1∶1比例添加1μmol/L地塞米松和BMSCs条件培养基;D组仅添加BMSCs条件培养基。培养24 h后收集细胞测定ALP含量,Western blot测定细胞内RUNX2、骨钙素(Osteocalcin)蛋白表达,实时荧光定量PCR(real-time fluorescence quantitative PCR,RT-q PCR)测定细胞内α1-Ⅰ型胶原(collagen typeⅠ-α1,COL1A1)、RUNX2、ALP、Osteocalcin基因表达;21 d后行茜素红染色观察钙结节形成情况。结果培养24 h后,B、C、D组ALP含量均显著低于A组,B组低于C、D组(P<0.05),C、D组间差异无统计学意义(P>0.05)。Western blot检测示,B组RUNX2蛋白相对表达量显著低于A、C、D组(P<0.05),A、C、D组间比较差异无统计学意义(P>0.05);B组Osteocalcin蛋白相对表达量均显著低于A、C、D组,A、C组低于D组(P<0.05),A、C组间差异无统计学意义(P>0.05)。RT-q PCR检测示,B、C、D组RUNX2、Osteocalcin、COL1A1、ALP基因相对表达量均显著低于A组(P<0.05);D组RUNX2、Osteocalcin、ALP基因相对表达量均显著高于B、C组,C组显著高于B组(P<0.05);D组COL1A1基因相对表达量显著高于B组(P<0.05),B、C组间及C、D组间比较差异均无统计学意义(P>0.05)。培养6 d时A组细胞死亡;21 d时B、C、D组均可见钙结节阳性染色,且逐渐增强。结论小鼠BMSCs条件培养基能改善地塞米松对成骨细胞成骨功能的抑制效应。 Objective To explore the paracrine effect of bone marrow mesenchymal stem cells(BMSCs) on dexamethasone-induced inhibition of osteoblast function in vitro. Methods The serum free conditioned medium of mouse BMSCs cultured for 24 hours was prepared for spare use. The 3rd passage of MC3T3-E1 cells were divided into 4 groups: the control group(group A), dexamethasone group(group B), dexamethasone+BMSCs conditioned medium(1 ∶ 1) group(group C), and BMSCs conditioned medium group(group D). After 24 hours of culture, the alkaline phosphatase(ALP) content was determined; the protein expressions of RUNX2 and Osteocalcin were detected by Western blot; and the gene expressions of collagen type I-α 1(COL1A1), RUNX2, ALP, and Osteocalcin were detected by realtime fluorescence quantitative PCR(RT-q PCR); alizarin red staining was used to observe calcium nodules formation at 21 days. Results After cultured for 24 hours, ALP content was significantly lower in groups B, C, and D than group A, and in group B than groups C and D(P〈0.05), but no significant difference was found between groups C and D(P〈0.05). The relative protein expression of RUNX2 of group B was significantly lower than that of groups A, C, and D(P〈0.05), but difference was not significant between groups A, C, and D(P〉0.05). The relative protein expression of Osteocalcin was significantly lower in group B than groups A, C, and D, in groups A and C than group D(P〈0.05), but difference had no significance between groups A and C(P〉0.05). The relative gene expressions of RUNX2, Osteocalcin, COL1A1, and ALP of groups B, C, and D were significantly lower than those of group A(P〈0.05); the relative gene expressions of RUNX2, Osteocalcin, and ALP were significantly higher in group D than groups B and C, in group C than group B(P〈0.05). The gene expression of COL1A1 was significantly higher in group D than group B(P〈0.05), but difference was not significant between groups B and C, and between groups C and D(P〉0.05). The cells of group A all died at 6 days after culture; at 21 days, the calcium nodule staining was positive by alizarin red in groups B, C and D, and the degree of the staining gradually increased from groups B to D. Conclusion BMSCs conditioned medium can alleviate the inhibitory effect of dexamethasone on osteoblasts function.
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2016年第6期761-766,共6页 Chinese Journal of Reparative and Reconstructive Surgery
基金 广东省科技计划项目(2012B031800490 2011B031800172) 广东医学院附属医院博士启动基金资助项目(BK201209)~~
关键词 成骨细胞 BMSCS 条件培养基 地塞米松 成骨 小鼠 Osteoblasts Bone marrow mesenchymal stem cells Conditioned medium Dexamethasone Osteogenesis Mouse
  • 相关文献

参考文献29

  • 1James CG, Ulici V, Tuckermann J, et al. Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genornics, 2007, 8: 205.
  • 2Cui Y, Kaisaierjiang A, Cao P, et al. Association of apolipoprotein A5 genetic polymorphisms with steroid-induced osteonecrosis of femoral head in a Chinese Han population. Diagn Pathol, 2014, 9: 229.
  • 3Souttou B, Raulais D, Vigny M. Pleiotrophin induces angiogenesis: involvement of the phosphoinositide-3 kinase but not the nitric oxide synthase pathways. J Cell Physiol, 2001, 187(1): 59-64.
  • 4Himburg HA, Muramoto GG, Daher P, et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med, 2010, 16(4): 475-482.
  • 5Frenkel B, White W, Tuckermann J. Glucocorticoid-induced osteoporosis. Adv Exp Med Biol, 2015, 872: 179-215.
  • 6Teplyuk NM, Zhang Y, Lou Y, et al. The osteogenic transcription factor runx2 controls genes involved in sterol/steroid metabolism, including CYP11A1 in osteoblasts. Mol Endocrinol, 2009, 23(6): 849- 861.
  • 7La Corte R, Trotta F, Adami S. Glucocorticoid receptors and bone. Gluc Curr Pharm Des, 2010, 16(32): 3586-3592.
  • 8Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143- 147.
  • 9Sutton MT, Bonfield TL. Stem cells: innovations in clinical applications. Stem Cells lnt, 2014, 2014: 516278.
  • 10Lebouvier A, Poignard A, Cavet M, et al. Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after in)ection. Stem Cell Res Ther, 2015, 6: 68.

二级参考文献48

  • 1Zhao CQ, Jiang LS, Dai LY. Programmed cell death in intervertebral disc degeneration. Apoptosis, 2006, 11 (12): 2079-2088.
  • 2Yang SH, Wu CC, Shih TT, et al. In vitro study on interaction between human nucleus pulposus cells and mesenchymal stem cells through paracrine stimtdation. Spine (Phila Pa 1976), 2008, 33(18): 1951-1957.
  • 3Roberts S, Evans H, Trivedi J, et al. Histology and pathology of the human intervertebral disc. J Bone Joint Surg (Am), 2006, 88 Suppl 2: 10-14.
  • 4Hiyama A, Mochida J, Sakai D. Stem cell applications in intervertebral disc repair. Cell Mol Biol (Noisy-le-grand), 2008, 54(1): 24-32.
  • 5Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials, 2003, 24(20): 3531-3541.
  • 6Vadala G, Studer RK, Sowa G, et al. Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine (Phila Pa 1976), 2008, 33(8): 870-876.
  • 7Sobajima S, Vadala G, Shimer A, et al. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J, 2008, 8(6): 888-896.
  • 8Gruber HE, Ingram JA, Davis DE, et al. Increased cell senescence is associated with decreased cell proliferation in vivo in the degenerating human annulus. Spine J, 2009, 9(3): 210-215.
  • 9Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther, 2007, 9(3): R45.
  • 10Richardson SM, Hughes N, Hunt JA, et al. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials, 2008, 29(1): 85-93.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部