期刊文献+

独立成分分析在电磁攻击中的应用 被引量:4

Independent component analysis applied in electromagnetic attack
下载PDF
导出
摘要 电磁泄漏曲线的对齐与有效点的选取是信息安全的重要研究方向.针对曲线过偏移的问题,提出了一种新的曲线对齐方法——双峰式相关对齐法.在有效抑制曲线过偏移的同时,实现了曲线的精确对齐通过独立成分分析(Independent Component Analysis,ICA)方法实现了有效点的选取.通过对电磁泄露曲线求得未知的源信号,由源信号作为特征点进行分类分析.分别采用ICA、主成分分析(Principal Components Analysis,PCA)、PCA-ICA、ICA-PCA四种方法对数据进行了降维处理.通过支持向量机(Support Vector Machine,SVM)对降维后的数据进行分类对比,最终得出:在10~100维范围内,PCA-ICA的分类效果最佳,ICA其次,而ICA-PCA的效果最差;在100~900维的范围内,PCA与ICA-PCA分类效果随着维度的增加几乎呈直线趋势增加. Alignment and valid points selection of electromagnetic leakage curves are important re- search direction of information security. For the problem of curve excessive shifted, a new method of curve alignment is proposed, whose name is bimodal correlation alignment method. The method effectively con- trols the curve excessive shift, and also achieves a precise alignment result. It is proposed to use independ- ent component analysis (ICA) to select valid points. By the method of ICA, unknown source signals are obtained from electromagnetic leakage curves for classification analysis. ICA, principal components analy- sis(PCA), ICA-PCA, and PCA-ICA are adopted for dimensionality reduction. The classification result is got by support vector machine ( SVM ) . It shows that success rate of ICA and PCA - ICA grows rapidly with the increase of the dimensions. PCA-ICA is the best, ICA is better, whice the worst is ICA-PCA, in the dimensionality 10 to 100. In the dimensionality 100 to 900, the success rate grows mostly like a line with the increase of the dimension.
出处 《电波科学学报》 EI CSCD 北大核心 2016年第2期401-405,共5页 Chinese Journal of Radio Science
基金 国家自然科学基金(No.61202399 61571063 61472357)
关键词 电磁泄漏 独立成分分析 降维 支持向量机 主成分分析 electromagnetic leakage ICA dimensionality reduction SVM PCA
  • 相关文献

参考文献14

  • 1TANG M. Cluster based power analysis against the RSM scheme in different implementation. Crypto IC 2014[R]R. Beijing: Tsinghua University, 2014. 12- 26.
  • 2RECHBERGER C, OSWALD E. Practical template attacks[R]. WISA 2004.Lecture Notes in Computer Science3325. Berlin. Springer, 2004440-456.
  • 3GIERLICHS B, LEMKE-RUST K, PAAR C. Tem- plates vs. stochastic methods[R]. CHES 2006. Lec- ture Notes in Computer Science 4249. Berlin. Spring- er, 2006 : 15-29.
  • 4邓高明,赵强,张鹏,陈开颜,刘晓芹.针对密码芯片的电磁频域模板分析攻击[J].计算机学报,2009,32(4):602-610. 被引量:16
  • 5章季阳,郏晖,庞磊.基于模板攻击的AES差分能量分析[J].信息安全与技术,2014,5(9):51-54. 被引量:1
  • 6ARCHAMBEAU C,PEETERS E, STANDAERT F, et al. Template attacks in principal subspaces[R]. Ches 2006. Lecture Notes in Computer Science 4249. Berlin Springer 2006 : 1-4.
  • 7HASTIE T, TIBSHIRANI R, FRIEDMAN J, et al. The elements of statistical learning data mining, in ference and prediction [J]. The mathematical intelli gencer, 2005, 27(2):83-85.
  • 8李静,张洪欣,甘罕,石松,贺鹏飞.基于回声状态网络的功耗曲线特征提取[J].电波科学学报,2014,29(6):1127-1132. 被引量:3
  • 9HOMMA N, NAGASHIMA S, SUGA-WARA T. A high-resolution phase-based waveform matching and its application to side-channel attacks [J]. IEICE transactions on fundamentals, 2008, ME91-A (1) . 193-202.
  • 10MANGARDS,OSWALDE,POPPT.能量分析攻击[M].冯登国,周永彬,刘继业,等译.北京:科学出版社,2009.

二级参考文献60

共引文献40

同被引文献18

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部