期刊文献+

基于核模糊C均值指纹库管理的WIFI室内定位方法 被引量:12

WIFI fingerprinting localization based on Kernel Fuzzy C-means Ⅱ Clustering
下载PDF
导出
摘要 针对目前已有的基于指纹的WIFI室内定位指纹库的管理方法对野值和噪声的敏感性,提出一种基于核模糊C均值聚类的指纹库管理的室内定位方法.利用核函数将指纹库从低维空间映射到高维空间并结合模糊聚类方法在高维空间进行指纹库管理,并在管理后的指纹库上进行定位匹配.将指纹库映射到高维空间可以使指纹库中的数据线性可分,从而实现更好的聚类.核模糊C均值(KFCM-Ⅱ)的聚类鲁棒性能够降低聚类对噪声和野值的敏感性,从而保证系统的鲁棒性.在实测数据的实验中,将所提出的方法与基于K均值聚类和基于模糊C均值聚类的室内定位方法进行对比,实验结果表明,所提出的方法相较于K均值方法和模糊C均值方法聚类准确度分别提高了14.20%和10.58%,定位精度分别提高了26.98%和20.43%. An indoor fingerprinting localization method based on kernel fuzzy C-means clustering was proposed to address sensitivity to noise and outliers of already existed methods of management on fingerprint database in indoor positioning system based on WIFI.The proposed method firstly mapped the fingerprint database from low-dimensional to high-dimensional space and was combined with fuzzy clustering in high-dimensional space to manage fingerprint database using kernel function,followed by positioning match to obtain user's location.With mapping fingerprint database to high-dimensional space,the data could be separated linearly in high-dimensional space to accomplish better clustering.In addition,KFCM-Ⅱ was robust and could lower the sensitivity results from noise and outliers to ensure robustness of the positioning system.In the experiments of processing measured data,the proposed method,management methods on fingerprint database based on K-means Clustering and Fuzzy C-means Clustering were compared,and the results show that the proposed method outperforms K-means method and Fuzzy Cmeans method by 14.20% and 10.58% on clustering accuracy respectively,leading to 26.98% and 20.43%improvements in positioning accuracy.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1126-1133,共8页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2013AA12A201)
关键词 WIFI室内定位 指纹 核模糊C均值(KFCM)聚类 鲁棒性 K最近邻居法 WIFI indoor positioning fingerprint Kernel Fuzzy C-means(KFCM)clustering robustness K-nearest neighbor
  • 相关文献

参考文献19

  • 1季宇虹,王让会.全球导航定位系统GNSS的技术与应用[J].全球定位系统,2010,35(5):69-75. 被引量:33
  • 2MAINETTI L, PATRONO L, SERGI I. A survey on indoor positioning systems [C]// 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SOftCOM). Split: IEEE, 2014:111 - 120.
  • 3YOUSSEF M. A WIFI based indoor location determina tion system[D]. City of College Park: University of Maryland. 2004.
  • 4TIAN Z, TANG X, ZHOU M, et al. Fingerprint in door positioning algorithm based on affinity .c)ropagation clustering [J]. EURAS1P Journal on Wireless Communi- cations and Networking, 2013, 2013(1): 1- 8.
  • 5FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315 (5814): 972 - 976.
  • 6LEECW, LINTN, FANGSH, etal. Anovelcluste ring based approach of indoor location fingerprinting [C]//2013 IEEE 24th International Symposium on Per- sonal Indoor and Mobile Radio Communications (PIM- RC). London: IEEE, 2013:3191-3196.
  • 7BAI S, WU T. Analysis of K Means algorithm on fin gerprint based indoor localization system[G] // 2013 IEEE 5th International Symposium on Microwave, Anten- na, Propagation and EMC Technologies for Wireless Communications ( MAPE ). Chengdu: IEEE, 2013: 44 - 48.
  • 8SUROSO D J, CHERNTANOMWONG P, SOORAK SA P, et al. I.ocation fingerprint technique using fuzzy C means clustering algorithm for indoor localization [C] // TENCON 2011-2011 IEEE Region 10th Conference. Bali: IEEE, 2011:88- 92.
  • 9ZHOU H, VAN N N. Indoor fingerprint localization based on fuzzy c means clustering [C]//2014 Sixth In- ternational Conference on Measuring Technology and Mechatronics Automation ( ICMTMA ). Zhangjiajie:IEEE, 2014: 337-340.
  • 10ZIJIE Q, ZHAN X, DAN L, et al. Algorithm of in- door location based on RSS and secondly fuzzy cluste- ring [C]//2013 International Conference on Communi- cations, Circuits and Systems (ICCCAS). Chengdu: IEEE, 2013: 55-58.

二级参考文献63

共引文献266

同被引文献117

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部