期刊文献+

极大平面图的结构与着色理论 (2)多米诺构形与扩缩运算 被引量:7

Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations
下载PDF
导出
摘要 业已证明四色猜想的数学证明可归结为刻画4-色漏斗型伪唯一4-色极大平面图的特征。为刻画此类极大平面图的结构特征,本文提出一种构造极大平面图的方法——扩缩运算。研究发现:此方法的关键问题是需要清楚一种构形,称为多米诺构形。文中构造性地给出了多米诺构形的充要条件;在此基础上提出并建立了一个图的祖先图与子孙图理论与构造方法。特别证明了:任一最小度≥4的n(≥9)-阶极大平面图必含(n-2)-阶或(n-3)-阶祖先图;给出极大平面图的递推构造法,并用此方法构造出6~12-阶所有最小度≥4的极大平面图。扩缩运算是本系列文章的基石。 The first paper of this series of articles revealed that Four-Color Conjecture is hopefully proved mathematically by investigating a special class of graphs, called the 4-chromatic-funnel, pseudo uniquely-4- colorable maximal planar graphs. To characterize the properties of such class of graphs, a novel technique, "extending-contracting operation", is proposed which can be used to construct maximal planar graphs. The essence of this technique is to study a special kind of configurations, domino configurations. In this paper, a necessary and sufficient condition for a planar graph to be a domino configuration is constructively given, on the basis of which it is proposed to construct the ancestor-graphs and descendent-graphs of a graph. Particularly, it is proved that every maximal planar graph with order n (≥ 9) and minimum degree≥ 4 has an ancestor-graph of order (n - 2) or (n- 3). Moreover, an approach is put forward to construct maximal planar graphs recursively, by which all maximal planar graphs with order 6-12 and minimum degree≥ 4 are constructed. The extending-contracting operation constitutes the foundation in this series of articles.
作者 许进
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第6期1271-1327,共57页 Journal of Electronics & Information Technology
基金 国家973规划项目(2013CB329600) 国家自然科学基金(61372191 61472012 61472433 61572046 61502012 61572492 61572153 61402437)~~
关键词 极大平面图 扩缩运算 多米诺构形 祖先图 子孙图 递推构造法 Maximal planar graphs Extending-contracting operations Domino configurations Ancestor-graphs Descendent-graphs Recursive construction approach
  • 相关文献

参考文献24

  • 1APPEL K and HAKEN W. The solution of the four-color map problem[J]. Science American, 1977, 237(4): 108-121. doi: 10.1038/scientificamerican1077-108.
  • 2APPEL K and HAKEN W. Every planar map is four colorable, I: discharging[J]. Illinois Journal of Mathematics, 1977, 21(3): 429-490.
  • 3APPEL K, HAKEN W, and KOCH J. Every planar map is four-colorable, II: Reducibility[J]. Illinois Journal of Mathematics, 1977, 21(3): 491 567.
  • 4EBERHARD V. Zur Morphologie Der Polyeder, Mit Vielen Figuren hn Text[M]. Leipzig: Benedictus Gotthelf Teubner, 1891: 14-68.
  • 5王绍文.构造极大平面图的圈加点法[J].北京机械工业学院学报,2000,15(1):26-29. 被引量:5
  • 6王绍文.构造极大平面图的三种方法[J].北京机械工业学院学报,1999,14(1):16-22. 被引量:9
  • 7BARNETTE D. On generating planar graphs[J]. Discrete Mathematics, 1974, 7(3-4): 199-208. doi: 10.1016/0012- 365X(74) 90035-1.
  • 8BUTLER J W. A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 1974, 26(2): 138 146.
  • 9BATAGELJ V. An inductive definition of the class of 'all triangulations with no vertex of degree smaller than 5[C]. Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983: 15-24.
  • 10WAGNER K. Bemerkmlgen zum vierfarbenproblem[J]. Jahresbericht dcr Deutschen Mathematiker- Vreinigung 1936, 46: 26-32.

二级参考文献6

共引文献12

同被引文献32

  • 1JENSEN T R and TOFT B. Graph coloring problems[J]. Wiley-Interscience Series in Discrete Mathematics and Optimization, 1995, 113(2): 29-59.
  • 2DIAZ J, PETIT J, and SERNA M. A survey of graph layout problems[J]. ACM Computing Surveys, 2002, 34(3): 313-356.
  • 3BRODER A, KUMAR R, MAGHOUL F, et al. Graph structure in the web[J]. Computer Networks, 2000, 33(1/6): 309-320.
  • 4KEMPE A B. On the geographical problem of the four colors[J]. American Journal of Mathematics, 1879, 2(3): 193-200.
  • 5FISK S. Geometric coloring theory[J]. Advances in Mathematics, 1977, 24(3): 298-340.
  • 6MEYNIEL H. Les 5-colorations d'un graphe planaire Forment une classe de commutation unique[J]. Journal of Combinatorial Theory Series B, 1978, 24(3): 251-257.
  • 7VERGNAS M L and MEYNIEL H. Kempe classes and the Hadwiger conjecture[J]. Journal of Combinatorial Theory Series B, 1981, 31(1): 95-104.
  • 8MOHAR B. Kempe Equivalence of Colorings[M]. Graph Theory in Paris, Birkh?user Basel, 2006: 287-297.
  • 9FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe equivalence of colourings of cubic graphs[J]. Electronic Notes in Discrete Mathematics, 2015, 49: 243-249.
  • 10CERECEDA L, HEUVEL J V D, and JOHNSON M. Connectedness of the graph of vertex-colourings[J]. Discrete Mathematics, 2008, 308(5/6): 913-919.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部