期刊文献+

极大平面图的结构与着色理论 (3)纯树着色与唯一4-色极大平面图猜想 被引量:5

Theory on Structure and Coloring of Maximal Planar Graphs (3) Purely Tree-colorable and Uniquely 4-colorable Maximal Planar Graph Conjectures
下载PDF
导出
摘要 一个极大平面图若是从K_4出发,不断地在三角面上嵌入3度顶点得到的,则称此极大平面图为递归极大平面图。唯一4-色极大平面图猜想是指:一个平面图是唯一4-可着色的当且仅当它是递归极大平面图。此猜想已有43年历史,是图着色理论中继四色猜想之后另一个著名的未解猜想。为此,该文相继深入研究了哑铃极大平面图与递归极大平面图的结构与特性,结合该系列文章(2)的扩缩运算,给出了证明唯一4-色极大平面图猜想的一种思路。 A maximal planar graph is called the recursive maximal planar graph if it can be obtained from K4 by embedding a 3-degree vertex in some triangular face continuously. The uniquely 4-colorable maximal planar graph conjecture states that a planar graph is uniquely 4-colorable if and only if it is a recursive maximal planar graph. This conjecture, which has 43 years of history, is a very influential conjecture in graph coloring theory after the Four-Color Conjecture. In this paper, the structures and properties of dumbbell maximal planar graphs and recursive maximal planar graphs are studied, and an idea of proving the uniquely 4-eolorable maximal planar graph conjecture is proposed based on the extending-contracting operation proposed in this series of article (2).
作者 许进
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第6期1328-1353,共26页 Journal of Electronics & Information Technology
基金 国家973规划项目(2013CB329600) 国家自然科学基金(61372191 61472012 61472433 61572046 61502012 61572492 61572153 61402437)~~
关键词 唯一4-色极大平面图猜想 纯树着色猜想 哑铃极大平面图 递归极大平面图 Uniquely 4-colorable maximal planar graph conjecture Purely tree-colorable planar graph conjecture Dumbbell maximal planar graphs Recursive maximal planar graphs
  • 相关文献

参考文献1

二级参考文献24

  • 1APPEL K and HAKEN W. The solution of the four-color map problem[J]. Science American, 1977, 237(4): 108-121. doi: 10.1038/scientificamerican1077-108.
  • 2APPEL K and HAKEN W. Every planar map is four colorable, I: discharging[J]. Illinois Journal of Mathematics, 1977, 21(3): 429-490.
  • 3APPEL K, HAKEN W, and KOCH J. Every planar map is four-colorable, II: Reducibility[J]. Illinois Journal of Mathematics, 1977, 21(3): 491 567.
  • 4EBERHARD V. Zur Morphologie Der Polyeder, Mit Vielen Figuren hn Text[M]. Leipzig: Benedictus Gotthelf Teubner, 1891: 14-68.
  • 5BARNETTE D. On generating planar graphs[J]. Discrete Mathematics, 1974, 7(3-4): 199-208. doi: 10.1016/0012- 365X(74) 90035-1.
  • 6BUTLER J W. A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 1974, 26(2): 138 146.
  • 7BATAGELJ V. An inductive definition of the class of 'all triangulations with no vertex of degree smaller than 5[C]. Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983: 15-24.
  • 8WAGNER K. Bemerkmlgen zum vierfarbenproblem[J]. Jahresbericht dcr Deutschen Mathematiker- Vreinigung 1936, 46: 26-32.
  • 9BRINKMANN G and MCKAY B D. Construction of planar triangulations with minimum degree 5[J]. DiscTte Mathematics, 2005, 301: 147-163. doi: 10.1016/j.disc.2005.06. 019.
  • 10MCKAY B D. Isomorph-free exhaustive generation[J]. Journal of Algorithms, 1998, 26(2): 306-324. doi: 10.1006/ jagm. 1997.0898.

共引文献6

同被引文献32

  • 1JENSEN T R and TOFT B. Graph coloring problems[J]. Wiley-Interscience Series in Discrete Mathematics and Optimization, 1995, 113(2): 29-59.
  • 2DIAZ J, PETIT J, and SERNA M. A survey of graph layout problems[J]. ACM Computing Surveys, 2002, 34(3): 313-356.
  • 3BRODER A, KUMAR R, MAGHOUL F, et al. Graph structure in the web[J]. Computer Networks, 2000, 33(1/6): 309-320.
  • 4KEMPE A B. On the geographical problem of the four colors[J]. American Journal of Mathematics, 1879, 2(3): 193-200.
  • 5FISK S. Geometric coloring theory[J]. Advances in Mathematics, 1977, 24(3): 298-340.
  • 6MEYNIEL H. Les 5-colorations d'un graphe planaire Forment une classe de commutation unique[J]. Journal of Combinatorial Theory Series B, 1978, 24(3): 251-257.
  • 7VERGNAS M L and MEYNIEL H. Kempe classes and the Hadwiger conjecture[J]. Journal of Combinatorial Theory Series B, 1981, 31(1): 95-104.
  • 8MOHAR B. Kempe Equivalence of Colorings[M]. Graph Theory in Paris, Birkh?user Basel, 2006: 287-297.
  • 9FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe equivalence of colourings of cubic graphs[J]. Electronic Notes in Discrete Mathematics, 2015, 49: 243-249.
  • 10CERECEDA L, HEUVEL J V D, and JOHNSON M. Connectedness of the graph of vertex-colourings[J]. Discrete Mathematics, 2008, 308(5/6): 913-919.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部