期刊文献+

基于用户相似度的协同过滤算法改进 被引量:18

Improved collaborative filtering algorithm based on user-similarity
下载PDF
导出
摘要 协同过滤技术作为目前最常见的个性化推荐技术之一,被广泛认可和应用.作为基于内容的算法执行方式,协同过滤在准确性上具有相当的优势.该算法的核心问题是相似度的计算.本论文介绍了传统协同过滤算法,并对原有的相似度公式进行了优化,使得相似度计算更具有准确性.实验表明,文中提出的优化方法在推荐精度上有显著提高,降低了平均绝对误差(Mean Absolute Error,MAE). Collaborative filtering is widely accepted and applied currently as one of the most popular personalized recommendation methods.It is an implementation method based on content that has considerable advantages in accuracy.The core issue of collaborative filtering is how to work out the calculation of similarity.In this paper,we introduce the traditional collaborative filtering algorithm and make similarity calculation more accurately by optimizing the traditional formula of similarity.Experimental results show that the optimized algorithm can improve the accuracy of the recommendation and reduce the MAE(Mean Absolute Error,MAE) efficiently.
作者 王威 郑骏
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期60-66,共7页 Journal of East China Normal University(Natural Science)
基金 国家高技术研究发展计划(2013AA01A211)
关键词 推荐技术 相似度 协同过滤 MAE recommendation methods similarity collaborative filtering MAE
  • 相关文献

参考文献16

二级参考文献304

共引文献1183

同被引文献114

引证文献18

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部