期刊文献+

半圆形微通道内纳米流体流动与传热特性 被引量:4

Heat Transfer and Flow Characteristics of Nanofluids Flowing through Semicircular Microchannel
原文传递
导出
摘要 为了研究流体流经半圆形微通道的传热与流动特性,对去离子水、Cu-水纳米流体及Al-水纳米流体在21个当量直径为612μm的平行半圆形微通道热沉(微型散热片)中的流动与对流换热特性进行了实验研究。研究发现:与截面为矩形的常规形状相比,半圆形微通道也具有很好的换热效果,与去离子水相比,添加Al和Cu纳米颗粒的纳米流体压降损失增大。当纳米流体的质量浓度为0.5%时,在微通道换热器中的纳米流体效应由于粘度过大等原因发生了恶化,并且这种恶化在高流速下也出现了。根据实验数据得到了半圆形微通道内低浓度纳米流体的层流对流换热以及摩擦阻力系数关联式,对热性能系数的分布曲线进行了综合分析,研究结果对于集成高效芯片散热系统设计具有重要意义。 In order to study the heat transfer and flow characteristics of fluid flowing through the semi-circular microchannel,the convective heat transfer characteristics of deionized water,Cu-water nanofluids and Al-water nanofluids were studied experimentally in the progress of thermal subsidence in 21 semicircular parallel microchannels with 612μm equivalent diameter.Microchannel heat transfer coefficient of thermal subsidence and pressure drop were measured and calculated.The fact that semicircular microchannel heat exchanger also has good heat transfer performance compared to the conventional shape of rectangular cross-section was confirmed by the results.Moreover,compared to deionized water,adding Al and Cu nanoparticles increases the pressure drop.Nanofluids effects in the process of thermal subsidence in microchannels deteriorate due to the accumulation of nanoparticles,precipitate,and the viscosity and other reasons when the concentration of nanofluids is 0.5%.Based on the experimental data,the correlations of laminar convective heat transfer and drag coefficient of low concentration of nanofluids in semicircular microchannel were formulated.The results are of great significance for the integrated chip cooling system design.
出处 《热能动力工程》 CAS CSCD 北大核心 2016年第6期27-34,121-122,共8页 Journal of Engineering for Thermal Energy and Power
基金 教育部新世纪优秀人才支持计划项目(NECT-12-0727)
关键词 纳米流体 微通道 传热系数 阻力特性 nanofluids microchannel heat transfer coefficient resistance characteristics
  • 相关文献

参考文献17

  • 1Popov V N. Carbon nanotubes: properties and application[J]. Ma- terials Science and Engineering: R : Reports, 2004,43 ( 3 ) : 61 -102.
  • 2Chein R, Huang G. Analysis of mieroehannel heat sink performance using nanofluids [ J ]. Applied Thermal Engineering, 2005, 25 (17) : 3104 -3114.
  • 3Ho C J, Wei L C, Li Z W. An experimental investigation of forced convective cooling performance of a microchannel heat sink with A12 03/water nanofluid [ J ]. Applied Thermal Engineering, 2010, 30(2) : 96 -103.
  • 4Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions [ J ]. International journal of heat and mass transfer, 2004.
  • 5宁常军,罗小平.微通道内纳米流体换热与压降特性[J].中南大学学报(自然科学版),2012,43(8):3000-3006. 被引量:6
  • 6苗辉,黄勇,王方.等温热源微通道单相液体层流换热特性[J].热能动力工程,2010,25(3):306-311. 被引量:7
  • 7Jung J Y, Oh H S, Kwak H Y. Forced convective heat transfer of nanofluids in microchannels[ J ]. International Journal of Heat and Mass Transfer,2009,52( 1 ) : 466 -472.
  • 8Peyghambarzadeh S M, Hashemabadi S H, Chabi A R, et al. Per- formance of water based CuO and Al203nanofluids in a Cu-Be al- loy heat sink with rectangular microchannels [ J ]. Energy Conver- sion and Management,2014,86 : 28 - 38.
  • 9Wang X Q, Mujumdar A S. A review on nanofluids-part I : theoreti- cal and numerical investigations [ J ]. Brazilian Journal of Chemical Engineering,2008,25(4) : 613 -630.
  • 10Han Z. Nanofluids with enhanced thermal transport properties [J]. University of Maryland at College Park. 2008, 88:124 - 133.

二级参考文献58

  • 1费业泰.误差理论与数据处理[M].北京:机械工业出版,1995.9-54.
  • 2GuoZengyuan(过增元).Hot subject of the international heat transfer community microelectronic cooling[J].中国科学基金,1988,2:20-25.
  • 3Choi S U S. Enhancing thermal conductivity of fluid with nanoparticles. ASME, FED, 1995, 231:99-105
  • 4Lee S, Choi S U S, Li S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 1999, 121: 280-289
  • 5Wang Xinwei, Xu Xianfan, Choi S U S. Thermal conductivity of nanoparticle fluid mixture. Journal of Thermophysics and Heat Transfer, 1999, 13 ( 4 ) : 474-480
  • 6Xuan Y M, Li Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow, 2000, 21 (1): 58-64
  • 7Wang Xiangqi, Mujumdar A S. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 2007, 46:1-19
  • 8Lee Jaeseon, Mudawar Issam. Assessment of the effectiveness of nanofluids for single phase and two-phase heat transfer in mierochannels. Int. J. Heat Mass Transfer, 2007, 50:452-463
  • 9Lee Donggeun, Kim Jaewon, Kim Bog G. A new parameter to control heat transport in nanofluids: surface charge state ofthe particle in suspension. J. Phys. Chem. B, 2006, 110:4323 4328
  • 10Drew D A. Theory of Multicomponent Fluids. Berlin: Springer, 1999

共引文献61

同被引文献58

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部