期刊文献+

即食牛乳中沙门氏菌生长模型的建立 被引量:2

Establishment of a predictive growth model for Salmonella in ready-to-eat sterile milk
原文传递
导出
摘要 为建立即食牛乳中沙门氏菌的生长预测模型,本研究测定了即食牛乳中沙门氏菌在8、15、20、25、30、37、42、47℃和50℃下的生长数据,进而利用Baranyi&Roberts方程和Cardinal方程为基础来建模。结果表明,以Baranyi&Roberts方程为基础来建立生长一级模型,数据拟合效果较好(R2>0.99,RMSE<0.26 Log10 cfu/m L);以Cardinal方程为基础来建立二级模型,数据拟合效果亦较好(R2>0.99,RMSE=0.03 h-1)。此外,通过外部验证,比对即食牛乳中沙门氏菌在27℃和35℃下的模型预测值与试验实测值,验证了所建模型的可靠性(预测值误差<5%)。表明所建预测模型能较好地描述沙门氏菌的生长动态,从而为有效监控即食乳品中沙门氏菌污染提供了理论依据。 The main objective of this study was to develop the primary and secondary models to describe the Salmonella in ready-to-eat sterile milk. The growth data of Salmonella in ready-to-eat sterile milk were collected at different temperatures (8, 15, 20, 25, 30, 37, 42, 47℃ and 50 ℃). And the data were fitted using Baranyi & Roberts equation and Cardinal equation to develop the model. The result indicated that the Baranyi & Roberts equation fitted the growth data well, the pseudo R2 values were〉0.99 and RMSE values were〈0.26 Log10 cfu/mL. And the Cardinal equation was also suitable for describing the effect of temperature on the specific growth rate for Salmonella in sterile milk, the pseudo R2 values were〉0.99 and RMSE values were 0.03 h-1. Furthermore, the reliability of the established model was tested by comparing growth data at 27℃ and 35 ℃. The result showed that the established model by study could effectively predict the growth trends in sterile milk, which will provide the useful information for detecting and controlling the contamination of Salmonella in ready-to-eat sterile milk.
出处 《食品科技》 CAS 北大核心 2016年第5期316-322,共7页 Food Science and Technology
基金 国家自然基金项目(31402234) 贵州省学位办项目(2011231)
关键词 即食牛乳 沙门氏菌 预测模型 ready-to-eat sterile milk Salmonella mathematically predictive growth model
  • 相关文献

参考文献20

  • 1SE Majowicz, J Musto, E Scallan, et al. The global burden of nontyphoidal Salmonella gastroenteritis[J]. Clinical Infectious Diseases,2010,50(6):882-889.
  • 2BR Jackson, PM Griffin, D Cole, et al. Outbreak-associated Salmonella enterica serotype and food commoditie, United States, 1998-2008[J]. Emerging Infectious Diseases,2013,19(8): 1239-1244.
  • 3European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food- borne outbreaks in 2013[J]. EFSA Journal,2015,13(1):3991.
  • 4高文茹,陈庆森,庞广昌,朱晨晨.西北地区原料奶沙门氏菌污染程度鉴定与分析[J].食品科技,2011,36(2):285-289. 被引量:7
  • 5周康,刘寿春,李平兰,马长伟,彭朝辉.食品微生物生长预测模型研究新进展[J].微生物学通报,2008,35(4):589-594. 被引量:60
  • 6迟海,李学英,杨宪时.微生物预测模型技术研究进展及其在食品工业中的应用[J].现代食品科技,2013,29(3):678-682. 被引量:11
  • 7L Isabelle, L Andre. Quantitative prediction of microbial behaviour during food processing using an integrated modelling approach: a review[J]. International Journal of Refri- geration,2006,29(6):968-984.
  • 8J Baranyi, TP Robinson, A Mackey, et al. Predicting growth of Brochothrix thermosphacta at changing temperature[J]. International Journal of Food Microbiology, 1995,27 ( 1 ):61-75.
  • 9J Baranyi, TA Roberts. A dynamic approach to predicting bacterial growth in food[J]. International Journal of Food Mic- robiology, 1994,23(3--4):277-294.
  • 10L Rosso, JR Lobry, JP Flandrois. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[J]. Journal of Theoretical Biology, 1993,162(4) :447-463.

二级参考文献114

共引文献116

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部