期刊文献+

气浮接触区气泡聚并行为的数值模拟 被引量:13

Numerical simulation of bubble coalescence behavior in contact zone of dissolved air flotation tank
下载PDF
导出
摘要 在气浮接触区内,聚并会导致气泡直径增大,对分离效果产生影响。采用相群平衡模型对接触区气泡聚并行为进行数值模拟,研究了气泡聚并发生的原因及来液流量、回流流量对气泡聚并的影响。首先分别应用Schiller-Naumann、Grace和Tomiyama 3种曳力系数模型进行模拟,所得气泡直径均与实验值吻合,无明显差异,选定Schiller-Naumann曳力系数模型对气浮中两相流动进行模拟。通过对模拟结果进行分析,表明回流入口周围上下行流过渡区域存在较大速度梯度,是导致气泡聚并的关键因素。最后研究了来液流量和回流流量对接触区气泡尺寸的影响,接触区上部气泡直径随回流流量增大而明显增大,原因在于增大回流流量使得过渡区域速度梯度升高,气泡聚并频率提高;而来液流量对气泡尺寸基本无影响。 Bubble coalescence can make the increase of bubble size in the contact zone of the dissolved air flotation tank, which will finally influence the separation efficiency. Population balance model was employed to study bubble coalescence behavior in the contact zone. With this numerical method, the bubble coalescence mechanism and effect of mainstream and recycle flow rates on coalescence phenomenon were studied. At first, Schiller-Naumann, Grace and Tomiyama drag coefficient models were included in the simulation process, respectively. The results showed that the bubble sizes simulated with these three models were similar with good accordance with the experimental data. Schiller-Naumann was adopted in the following simulation as its computational cost was lower than Grace and Tomiyama model. By comparing the bubble size distribution with velocity profile, high velocity gradient was detected at the upstream and downstream flow transition region around the recycle flow inlet. The high velocity gradient was proved to be the key factor causing bubble coalescence. At last, the influence of mainstream and recycle flow rates on bubble size was investigated. Bubble size in the contact zone increased with the increase of recycle flow rate because the velocity gradient at upstream and downstream transition region increased, which can enhance the bubble coalescence. On the contrary, mainstream flow rate showed no effect on bubble size distribution in the contact zone.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第6期2300-2307,共8页 CIESC Journal
基金 中央高校基本科研业务费专项资金项目(14CX06097A)~~
关键词 气浮 气泡 聚并 速度梯度 相群平衡模型 数值模拟 计算流体力学 air flotation bubble coalescence velocity gradient population balance model numerical simulation computational fluid dynamics
  • 相关文献

参考文献25

  • 1KOIVUNEN J, HEINONEN-TANSKI H. Dissolved air flotation (DAF) for primary and tertiary treatment of municipal wastewaters [J]. Environ. Technol., 2008, 29(1): 101-109.
  • 2KARAGUZEL C. Selective separation of fine albite from feldspathic slime containing colored minerals (Fe-Min) by batch scale dissolved air flotation (DAF) [J]. Miner. Eng., 2010, 23(1): 17-24.
  • 3WANG H, CHEN X L,BAI Y, et al. Application of dissolved air flotation on separation of waste plastics ABS and PS [J]. Waste Manag., 2012, 32(7): 1297-1305.
  • 4王新海,郑伟,马骏,马双龙,刘小强,张庆友.基于高溶气量的新型气浮系统的性能[J].化工学报,2013,64(3):1099-1105. 被引量:5
  • 5蔡宏镇,沈忱,任满年,曹发海.环流气浮法处理含油水体工艺[J].化工学报,2015,66(2):605-611. 被引量:13
  • 6LEPPINEN D, DALZIEL S. Bubble size distribution in dissolved air flotation tanks [J]. Journal of Water Supply: Research & Technology-AQUA, 2004, 53(8): 531-543.
  • 7BYEONG-YONG S, SOON-BUHM K, JIN-HEE M, et al. Characteristics of pretreatment parameters and bubble size influencing DAF efficiency [J]. Separation Science & Technology, 2009, 44(9): 1941-1953.
  • 8LAKGHOMI B, LAWRYSHYN Y, HOFMANN R. A model of particle removal in a dissolved air flotation tank: importance of stratified flow and bubble size [J]. Water Research, 2015, 68: 262-272.
  • 9ZHANG W, ZHANG J, ZHAO B, et al. Microbubble size distribution measurement in a DAF system [J]. Industrial & Engineering Chemistry Research, 2015, 54: 5179-5183.
  • 10HAN M, PARK Y, LEE J, et al. Effect of pressure on bubble size in dissolved air flotation [J]. Water Science & Technology Water Supply, 2002, 2(5): 41-46.

二级参考文献89

  • 1Liu Jiongtian,Xu Hongxiang,Li Xiaobing.Cyclonic separation process intensification oil removal based on microbubble flotation[J].International Journal of Mining Science and Technology,2013,23(3):415-422. 被引量:8
  • 2刘晓艳,马春曦,楚伟华,李清波,段吉国.水包油型油水乳液的制备[J].大庆石油学院学报,2005,29(3):102-103. 被引量:30
  • 3袁鹏,张景成,彭剑峰,宋永会.新型竖流气浮反应器工作性能与应用研究[J].环境工程学报,2007,1(1):59-63. 被引量:12
  • 4Mandar V Joshi. CFD interphase Tabib, Swarnendu A Roy, Jyeshtharaj B simulation of bubble culumn--an analysis of force and turbulence models. Chemical Engineering Journal, 2008, 139:589 -614.
  • 5Krishna R, van Baten J M, Ureanu M 1. Three phase Eulerian simulations of bubble column reactors operating in the churn turbulent regime: a scale up strategy. Chemical Engineering Scfence, 2000, 55: 3275- 3286.
  • 6Zhang D, Deen N G, Kuipers J A M. Numerical simulation of dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chemical Engineering Science, 2006, 61:7593- 7608.
  • 7Mudde R F, Simonin O. Two and three dimensional simulation of a bubble plume using a two fluid model. Chemical Engineering Science, 1999, 54:5061- 5071.
  • 8Hills J H. Radial non uniformity of velocity and voidage in a bubble column. Transactions of the Institution of Chemical Engineers, 1974, 52:1 -9.
  • 9Rampure Mohan R, Kulkrni Amol A, Ranade Vivek V. Hydrodynamic of bubble column reactors at high gas velocity: experiments and computational fluid dynamics (CFD) simulations. Ind. Eng. Chem. Res. , 2007, 46 ; 8431- 8447.
  • 10Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal 1979, 25:843- 855.

共引文献47

同被引文献112

引证文献13

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部