期刊文献+

增量的动态社会网络匿名化技术 被引量:5

Incremental Dynamic Social Network Anonymity Technology
下载PDF
导出
摘要 随着社会网络的快速发展和普及,如何保护社会网络中的敏感信息已成为当前数据隐私保护研究领域的热点问题.对此,近年来出现了多种社会网络匿名化技术.现有的匿名技术大多把社会网络抽象成简单图,然而实际生活中存在大量增量变化的社会网络,例如email通信网络,简单图并不能很好地刻画这种增量变化,因此,将社会网络抽象成增量序列具有现实意义.同时,在实际生活中大部分网络是带有权重信息的,即很多社会网络以加权图的形式出现,加权图与简单图相比携带了更多社会网络中的信息,也会带来更多的隐私泄露.将增量的动态社会网络抽象成一个加权图的增量序列.为了匿名加权图增量序列,提出了加权图增量序列k-匿名隐私保护模型,并设计了基于权重链表的baseline匿名算法WLKA和基于超图的匿名算法HVKA来防止基于结点标签和权重链表的攻击.最后,通过在真实数据集上的大量测试,证明了WLKA算法能够保证加权图增量序列隐私保护的有效性,HVKA算法则在WLKA的基础上更好地保留了原图的结构性质并提高了权重信息的可用性,同时还降低了匿名过程的时间代价. With the rapid development and popularity of social networks,how to protect privacy in social networks has become a hot topic in the realm of data privacy.However,in most of existing anonymity technologies in recent years,the social network is abstracted into a simple graph.In fact,there are a lot of incremental changes of social networks in real life and a simple graph can not reflect incremental society network well,so abstracting the social network into the incremental sequences becomes more realistic.Meanwhile,in real life most of the network contains weight information,that is,a lot of social networks are weighted graphs.Compared with the simple graph,weighted graphs carry more information of the social network and will leak more privacy.In this paper,incremental dynamic social network is abstracted into a weighted graph incremental sequence.In order to anonymize weighted graph incremental sequence,we propose a weighted graph incremental sequence k-anonymous privacy protection model,and design a baseline anonymity algorithm(called WLKA)based on weight list and HVKA algorithm based on hypergraph,which prevents the attacks from node point labels and weight packages.Finally,through a lot of tests on real data sets,it proves that WLKA can guarantee the validity of the privacy protection on weighted graph incremental sequence.Compared with WLKA,HVKA is better to retain the original structure properties and improves the availability of weight information,but it also reduces the time cost of anonymous process.
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第6期1352-1364,共13页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2012CB316201) 国家自然科学基金项目(61173031 61272178) 国家自然科学基金海外及港澳学者合作基金项目(61129002) 高等学校博士学科点专项科研基金项目(20110042110028) 中央高校基本科研业务费专项资金项目(N120504001)~~
关键词 动态社会网络 增量序列 数据隐私 权重链表 超图 信息损失 dynamic social network incremental sequence data privacy weight list hypergraph loss of information
  • 相关文献

参考文献13

  • 1Wang C J L, Wang E T, Chen A L P. Anonymization for Multiple Released Social Network Graphs [M] //Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2013:99-110.
  • 2Liu K, Terzi E. Towards identity anonymization on graphs [C] //Proc o{ the 2008 ACM SIGMOD Int Con{ on Management o{ Data. New York ACM, 2008 93-106.
  • 3Zhou B, Pei J. Preserving privacy in social networks against neighborhood attacks [C]//Proc of the 24th Int Conf on Data Engineering. Piscataway, NJ: IEEE, 2008 506-515.
  • 4Zou L, Chen L, C)zsu M T. K automorphism; A general framework for privacy preserving network publication [J]. The VLDB Journal, 2009, 2(1): 946-957.
  • 5Cheng J, Fu A W, Liu J. K-isomorphism: Privacy preserving network publication against structural attacks [C] //Proc of the 2010 ACM SIGMOD Int Conf on Management of Data. New York.. ACM, 2010:459-470.
  • 6Yuan M, Chen L. Node protection in weighted social networks [C] //Proc of Int Conf on Database Systems for Advanced Applications. Berlin: Springer, 2011 123-137.
  • 7Li Y, Shen H. Anonymizing graphs against weight-based attacks [C] //Proc of the Int Conf on Data Mining Workshops (ICDMW). Piscataway, NJ: IEEE, 2010:491-498.
  • 8Liu X, Yang X. A generalization based approach for anonymizing weighted social network graphs [C] //Proc of Int Conf on Web-Age Information Management. Berlin: Springer, 2011:118-130.
  • 9Yuan M, Chen L, Yu P S. Personalized privacy protection in social networks [J]. The VLDB Journal, 2010, 4(2) : 141- 150.
  • 10陈可,刘向宇,王斌,张弘毅,杨晓春.防止路径攻击的加权社会网络匿名化技术[J].计算机科学与探索,2013,7(11):961-972. 被引量:4

二级参考文献18

  • 1Wang S L, Tsai Z Z, Hong T P, et al. Anonymizing shortest paths on social network graphs[C]//Proceedings of the 3rd International Conference on Intelligent Information and Data?base Systems (ACIIDS ' 11). Berlin, Heidelberg: Springer?Verlag, 2011: 129-136.
  • 2Campan A, Truta T M. Data and structural k-anonymity in social networks[M]IIPrivacy, Security, and Trust in KDD. Berlin, Heidelberg: Springer-Verlag, 2009: 33-54.
  • 3Liu Kun, Terzi E. Towards identity anonymization on graphs[C]//Proceedings of the 2008 ACM SIGMOD Inter?national Conference on Management of Data (SIGMOD '08). New York, NY, USA: ACM, 2008: 93-106.
  • 4Zou Lei, Chen Lei, Ozsu M T. K-automorphism: a general framework for privacy preserving network publication[J]. Proceedings ofthe VLDB Endowment, 2009, 2(1): 946-957.
  • 5Cheng J, Fu A W, Liu Jia. K-isomorphism: privacy preserving network publication against structural attacks[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD '10). New York, NY, USA: ACM, 2010: 459-470.
  • 6Wu Wentao, Xiao Yanghua, Wang Wei, et al. K-symmetry model for identity anonymization in social networks[C]11 Proceedings of the 13th International Conference on Extending Database Technology (EDBT ' 10). New York, NY, USA: ACM, 2010: 111-122.
  • 7Yuan Mingxuan, Chen Lei, Yu P S. Personalized privacy protection in social networks[J]. Proceedings of the VLDB Endowment, 2010, 4(2): 141-150.
  • 8Iakovidou N, Symeonidis P, Manolopoulos Y. Multiway spec?tral clustering link prediction in protein-protein interaction networks[C]//Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB ' 1 0). Washington, DC, USA: IEEE Com?puter Society, 2010: 1-4.
  • 9Liu Lian, Wang Jie, Liu Jinze, et al. Privacy preservation in social networks with sensitive edge weights[C]llProceedings of the 2009 SIAM International Conference on Data Mining (SDM '09), Sparks, USA, 2009: 954-965.
  • 10Li Yidong, Shen Hong. Anonymizing graphs against weight?based attacks[C]//Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW ' 1 0), Syd?ney, Australia, 2010: 491-498.

共引文献12

同被引文献16

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部