期刊文献+

熔融物液柱碎化模型对先进压水堆堆外蒸汽爆炸计算的影响分析 被引量:1

Effect of Corium Jet Fragmentation Model on Ex-vessel Steam Explosion Calculation for Advanced PWR
下载PDF
导出
摘要 在堆外蒸汽爆炸计算中,液柱碎化模型影响着熔融物液滴生成速率、液滴直径、液滴分布、液滴凝固和气泡比例等粗混合参数和现象,从而影响了蒸汽爆炸的冲击载荷。本文基于MC3D V3.8程序,采用不同的液柱碎化模型(CONST模型和KHF模型)对先进压水堆堆外蒸汽爆炸进行计算分析,探讨了CONST和KHF模型对蒸汽爆炸计算的影响。结果表明,两种模型计算的粗混合状态类似;在熔融物触底时刻,爆炸性准则几乎相同,此时触发爆炸得到的冲击载荷差别很小,表明该时刻触发爆炸时不同液柱碎化模型对爆炸冲击计算的影响较小;在本文所定义的工况下,先进压水堆堆坑墙体承受的最高压力约为20 MPa,最大冲量小于0.2 MPa·s。 In the ex-vessel steam explosion calculation,the corium jet fragmentation model affects the premixing parameters and phenomena such as generation rate and size of corium drops,the distribution of corium drops,corium drop solidification,void fraction and so on,and then has influence on the strength of steam explosion.Different corium jet fragmentation models(CONST model and KHF model)were used to calculate the ex-vessel steam explosion for advanced PWR based on MC3DV3.8code in order to discuss the effect of corium jet fragmentation model on ex-vessel steam explosion calculation.It is shown that these two models give similar premixing conditions.At the time of melt bottom contact,explosion criteria of these two models are almost the same,so the strength of explosion triggering has a little difference,which indicates that these two models have a little influence on steam explosion calculation if the time of corium bottom contact is chosen as triggering time for advanced PWR.On the defined conditionfor advanced PWR,the maximum pressure near cavity wall is 20 MPa in approximation and the maximum impulse on cavity wall is smaller than 0.2 MPa·s.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2016年第5期812-818,共7页 Atomic Energy Science and Technology
关键词 蒸汽爆炸 粗混合 液柱碎化 熔融物液滴 steam explosion premixing jet fragmentation corium drop
  • 相关文献

参考文献1

二级参考文献8

  • 1I. Huhtiniemi, D. Magallon, H. Hohmann, Results of recent KROTOS FCI tests: Alumina versus corium melts, Nuclear Engineering and Design 189 (1999) 379-389.
  • 2J.H. Kim, B.T. Min, I.K. Park, Triggered steam explosions with the corium melts of various compositions in a two-dimnesional interaction vessel in the TROI facility, Nuclear Technology 176 (2011) 372-386.
  • 3D. Magallon, I. Huhtiniemi, Energetic event in fuel-coolant interaction test FARO L-33, in: ICONE-9 Conference, Nice, France, Apr. 2001.
  • 4I. Huhtiniemi, D. Magallon, Insight into steam explosions with corium melts in KROTOS, Nuclear Engineering and Design 204 (2001) 391-400.
  • 5J.H. Song, I.K. Park, Y.S. Shin, J.H. Kim, S.W. Hong, B.T. Min, et al., Fuel coolant interaction experiments in TROI using a UO2/ZrO2 mixture, Nucl. Eng. Des. 222 (2003) 1-15.
  • 6OECD Research Program on Fuel-Coolant Interaction, Phase 1 Final Report (Synthesis of Phase 1 Finding), July 2006.
  • 7OECD/NEA, Agreement on the OECD/NEA SERENA Project (to Address Remaining Issues on Fuel-Coolant Interaction Mechanisms and Their Effect on Ex-vessel Steam Explosion Energetics), Dec. 2008.
  • 8J.H. Kim, I.K. Park, B.T. MIN, S.W. HONG, H.Y. KIM, J.H. SONG, et al., Triggered steam explosion experiments in the TROI facility, in: 2005 International Conference on Advances in Nuclear Power Plants (ICAPP' 05), Seoul, Korea, May 2009.

共引文献1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部