期刊文献+

基于告警日志的网络故障预测 被引量:12

Network failure prediction based on alarm log
下载PDF
导出
摘要 收集整理某城域网络14个月的网络告警日志作为网络故障预测研究的数据集并提出一种基于告警日志的网络故障预测研究方法:首先以基于两级时间窗口的特征提取方法构建特征表征网络运行状态,并通过大量实验来选择构建特征所需的最佳参数组合,然后设计并实现了一种基于分类学习方法的自适应故障预测模型。大量的数据实验表明:对于整个网络未来6小时是否出现故障的预测准确率可以达到70%以上,明显好于基于威布尔分布的预测模型;在对网络设备故障进行预测时,分类预测的结果仍然优于基于威布尔分布的预测模型。初步研究结果表明,网络中大部分故障可通过网络运行日志数据进行预测,证明该方法具有较好的预测效果。 This paper researched the network failure prediction upon 14 months' network alarm logs collected from a metropolitan area network.The research method is shown as below:firstly,construct features to represent network characteristics by the means of the feature construction method which is based on two levels time windows;secondly,select optimal parameter combination to create the feature files through multiple experiments;thirdly,design and build adaptive failure prediction model according to classification learning methods.Numbers of experiments show that the accuracy of predicting whether the network failure takes place in 6 hours is up to 70%,is better than the prediction result of Weibull distribution model obviously;the results of classification prediction for network equipment failure are slightly better than Weibull distribution model.Preliminary research results show that most network failures can be predicted through analyzing previous network running logs and the method proposed in this paper is verified to be with good prediction effect.
出处 《计算机应用》 CSCD 北大核心 2016年第A01期49-53,共5页 journal of Computer Applications
基金 国家863计划项目(2015AA015308) 中央高校基本科研业务费科研专项(CDJZR185502)
关键词 网络故障 网络设备 故障预测 分类预测 威布尔分布 特征构建 network failure network equipment failure prediction classification prediction Weibull distribution feature construction
  • 相关文献

参考文献9

  • 1VICHARE N M, PECHT M G. Prognostics and health management of electronics[ J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229.
  • 2SALFNER F, LENK M, MALEK M. A survey of online failure pre- diction methods[ J]. ACM Computing Surveys, 2010, 42(3): 10.
  • 3LIANG Y, ZHANG Y, JETYE M, et al. BlueGene/L failure analy- sis and prediction models[ C] // Proceedings of the 2006 Intematin-al Conference on Dependable Systems and Networks. Piscataway: IEEE, 2006:425-434.
  • 4VAIDYANATHAN K, TRIVEDI K S. A measurement-based model for estimation of resource exhaustion in operational software systems [ C]//Proceedings of the 1999 10th International Symposium on Soft- ware Reliability Engineering. Piseataway: IEEE, 1999:84-93.
  • 5侯晓凯,李师谦,王杰琼,胡彬,邓晶.一种基于神经网络的网络设备故障预测系统[J].山东理工大学学报(自然科学版),2014,28(6):29-34. 被引量:12
  • 6HANG Y, ZHANG Y, XIONG H, et al. An adaptive semantic fil- ter for blue gene/L failure log analysis[ C]//IPDPS 2007: Proceed- ings of the 2007 IEEE International Parallel and Distributed Process- ing Symposium. Piscataway: IEEE, 2007:1-8.
  • 7OLINER A J, AIKEN A, STEARLEY J. Alert detection in system logs[C]// ICDM'08: Proceedings of the Eighth IEEE International Conference on Data Mining. Piseataway: IEEE, 2008:959-964.
  • 8LIANG Y, ZHANG Y, XIONG H, et al. Failure prediction in IBM blue gene/L event logs[ C]//Proceedings of Seventh IEEE Interna- tional Conference on Data Mining. Washington, DC: IEEE Comput- er Society, 2007:583 - 588.
  • 9GAO Z, XU Y, MENG F, et al. Improved information gain-based feature selection for text categorization [ C ]// Proceedings of the 2014 4th International Conference on Wireless Communications, Ve- hicular Technology, Information Theory and Aerospace & Electronic Systems. Piscataway: IEEE, 2014:1-5.

二级参考文献5

共引文献11

同被引文献88

引证文献12

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部