期刊文献+

面向网络教育学院的学习行为分析 被引量:5

Learning behavior analysis for distance learning college
下载PDF
导出
摘要 随着网络学习的普及,网络学习者的数据分析正成为一个新兴的研究方向。网络教育学院是一种以从业人员的继续教育为主的远程学历教育。通过对西安交通大学网络教育学院的学习日志进行分析,力图展示网络学院学习者的学习行为,并探索典型网络学习行为与学习成绩的关系。在对大量日志数据进行了统计分析的基础上,通过对学习者学习知识点个数及有效知识点完成率进行聚类分析,将网络学院学习者分类;采用Spearman相关系数分析了学习者各种学习行为和学习成绩间的相关性,这为后续网络教学的改进、更加准确地对网络教学进行测评提供了一种依据。 With the popularity of e-learning,data analysis of e-learners is becoming a new research direction.E-learning is a kind of continuing education practice,which is based on the distance learning college.Through analyzing the e-learning log,which was collected from Xi'an Jiaotong University Distance Learning College,this paper tried to demonstrate learning behavior of e-learners and explore the relationship between the typical learning behavior and the final score.On the basis of statistical analysis of a large number of log data,this paper used two indicators,the number of learned knowledge points and the effective knowledge point completion rate,to realize cluster analysis,and then classified the e-learners into four categories.In the end,the authors studied the correlation between the typical learning behavior and the final score of different e-learners by using the Spearman correlation coefficient.These studies provide a basis for the improvement and more accurate evaluation of the distance teaching.
出处 《计算机应用》 CSCD 北大核心 2016年第A01期224-227,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61103160) 教育部在线教育研究中心在线教育研究基金(全通教育)资助项目(2016YB165 2016YB169) 陕西省自然科学基础研究计划项目(2016JM6027 2016JM6080)
关键词 网络学习 学习行为分析 Sperman相关性 e-learning learning behavior analysis Spearman correlation
  • 相关文献

参考文献12

  • 1NESTERKO S O, DOTSENKO S, HAN Q, et al. Evaluating the geographic data in MOOCs[ C/OL]// Proceedings of Neural Infor- mation Processing Systems Workshop on Data Driven Education. [2015 - 10 - 15]. http://nesterko, com/files/papers/nips2013- nestero, pdf.
  • 2BALAKRISHNAN G, COETZEE D. Predicting student retention in massive open online courses using hidden Markov models [ R]. Berkeley: University of California at Berkeley, Department of Elec- trical Engineering and Computer Sciences, 2013.
  • 3KIZLCEC R F, PIECH C, SCHNEIDER E. Deeonstructing disen- gagement: analyzing learner subpopulations in massive open online courses[ C]// Proceedings of the Third International Conference on Learning Analytics and Knowledge. New York: ACM, 2013:170 - 179.
  • 4YANG D, SINHA T, ADAMSON D, et al. "Turn on, tune in, drop out": Anticipating student dropouts in massive open online courses [ C/OL]// Proceedings of the 2013 NIPS Data-Driven Education Workshop, 2013. [ 2015 - 10 - 15]. http://lytics, stanford, edu/ datadriveneducation/papers/yangetal, pdf.
  • 5ZHU H, ZHANG X, WANG X, et al. A case study of learning ac- tion and emotion from a perspective of learning analytics[ C] //Pro-ceedings of the 17th International Conference on Computational Sci- ence and Engineering. Washington, DC: IEEE Computer Society, 2014:420 - 424.
  • 6蒋卓轩,张岩,李晓明.基于MOOC数据的学习行为分析与预测[J].计算机研究与发展,2015,52(3):614-628. 被引量:249
  • 7JOVANOVIC M, VUKICEVIC M, MILOVANOVIC M, et al. Using data mining on student behavior and cognitive style data for impro- ving e-learning systems: a case study[ J]. International Journal of Computational Intelligence Systems. 2012, 5(3) : 597 - 610.
  • 8WEN M , ROSE C P . Identifying latent study habits by mining learner behavior patterns in massive open online courses[ C]// Pro- ceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York: ACM, 2014: 1983 - 1986.
  • 9SINHA T. "Your click decides your fate": Leveraging clickstream patterns from MOOC videos to infer students' information processing & attrition behavior[ J]. arXiv preprint arXiv, 2014: 1407. 7143.
  • 10DIEZ J, LUACES O, ALONSO-BETANZOS A, et al. Peer assess- ment in MOOCs using preference learning via matrix factorization [ C]//Proceedings of the 2013 NIPS Workshop on Data Driven Ed- ucation, 2013[ 2015 - 10 - 15]. http://lytics, stanford, edu/dat- adriveneducation/papers/diezetal, pdf.

二级参考文献31

  • 1李晓明.慕课:是橱窗?还是店堂?[J].中国计算机学会通讯,2013,9(12):24-28.
  • 2Siemens G. Connectivism A learning theory for the digital age [EB/OL]. (2005-04-05)[201406-01]. http://www. ingedewaard, net/papers/connectivism/2005 siernens_ALearning TheoryForTheDigitalAge. pd{.
  • 3Osvaldo R C. Moocs and the AI-Stanl,ord like courses: Two successl'ul and distinct course formats l'or massive open online courses [J/OL]. European Journal of' Open, Distance and E Learning, 2012(2) .- 1-13. [2014-06-01]. http=//l,iles, eric. ed. gov/l'ulltext/EJ982976, pdl.
  • 4Downes S. New technology supporting informal learning [J]. Journal of Emerging Technologies in Web Intelligence, 2010, 2(1) : 27-33.
  • 5Breslow L, Pritchard D, DeBoer J, et al. Studying learning in the worldwide classroom: Research into edX's first MOOC [J]. Research % Practice in Assessment, 2013, 8(1) : 13-25.
  • 6McAndrew P, Scanlon E. Open learning at a distance Lessons for struggling MOOCs [J]. Science, 2013, 342 (6165) : 1450-1451.
  • 7北大慕课教学研究组.2013北京大学首批慕课(MOOC)人群与网络调查分析报告[R/OL].北京:北京大学,2014[2014-06一01].http://pan.baidu.com/s/lc0vUMm0.
  • 8Waldrop M M. Online learning.. Campus 2.0 [J]. Nature, 2013, 495(7440) .. 160-163.
  • 9Stein L A. Casting a wider net [J]. Science, 2012, 338 (6113) .. 1422-1423.
  • 10Nesterko S, Dotsenko S, Hu Q, et al. Evaluating geographic data in MOOCs [C/OL] //Neural Information Processing Systems Workshop on Data Driven Education, 2013 [2014- 06-01]. http://nesterko, com/files/papers/nips2013-nesterko. pdf.

共引文献248

同被引文献45

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部